Available online at www.sciencedirect.com

SCIENCE@DIRECT'*’ IOURNALOF

COMPUTATIONAL
s 5 PHYSICS
ELSEVIER Journal of Computational Physics 215 (2006) 485-505

www.elsevier.com/locate/jcp

Solving procedure for a 25-diagonal coefficient matrix:
Direct numerical solutions of the three-dimensional linear
Fokker—Planck equation

Maximiliano Ujevic *, Patricio S. Letelier

Departamento de Matemdtica Aplicada, Instituto de Matemdtica, Estatistica e Computagdo Cientifica,
Universidade Estadual de Campinas, Bardo Geraldo, 13081-970, Campinas, SP, Brazil

Received 11 May 2005; received in revised form 3 November 2005; accepted 4 November 2005
Available online 19 December 2005

Abstract

We describe an implicit procedure for solving linear equation systems resulting from the discretization of the three-
dimensional (seven variables) linear Fokker—Planck equation. The discretization of the Fokker—Planck equation is per-
formed using a 25-point molecule that leads to a coefficient matrix with equal number of diagonals. The method is an
extension of Stone’s implicit procedure, includes a vast class of collision terms and can be applied to stationary or non
stationary problems with different discretizations in time. Test calculations and comparisons with other methods are pre-
sented in two stationary examples, including an astrophysical application for the Miyamoto—Nagai disk potential for a
typical galaxy.
© 2005 Elsevier Inc. All rights reserved.

Keywords: Numerical method; Three-dimensional Fokker—Planck equation

1. Introduction

In dealing with solutions of partial differential equations we often encounter a set of linear equations that
has to be solved. This set of linear equations depends on the method used for discretization. In general, when
dealing with three-dimensional systems the number of linear equations increases and the numerical solution of
these equations uses most of the computing time. An extreme case is the Fokker—Planck equation. The
Fokker—Planck equation is also known as the Fokker—Planck approximation because truncates the BBGKY
(N.N. Bogoliubov, M. Born, H.S. Green, J.G. Kirkwood, and J. Yvon) hierarchy of kinetic equations at its
lowest order by assuming that correlation between particles only plays a role as a sequence of uncorrelated
two-body encounters [1,2]. Note that the only “approximation” made in the Fokker—Planck equation comes
from the model adopted for collisions and, in fact, the Fokker—Planck equation can be derived from first

* Corresponding author.
E-mail addresses: mujevic@ime.unicamp.br (M. Ujevic), letelier@ime.unicamp.br (P.S. Letelier).

0021-9991/$ - see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcp.2005.11.004

mailto:mujevic@ime.unicamp.br
mailto:letelier@ime.unicamp.br

486 M. Ujevic, P.S. Letelier | Journal of Computational Physics 215 (2006) 485-505

principles and no ad hoc suppositions are needed. The solution of the Fokker—Planck equation is not an easy
task because in the three dimensional case it has seven variables: three space coordinates (x), three velocity
coordinates (v) and time (¢). In the two-dimensional case there is a simplification because the total number
of variables are five. In either case, the large number of grid nodes needed for the computation of the solution
becomes a storage data problem. In a three-dimensional problem, for a stationary or non-stationary equation,
the number of linear equations corresponds to the number of nodes in the phase-space grid (x, v). If we divide
each of the phase-space variables’ interval of the distribution function in nine parts (10 nodes), we will have a
grid with 10° nodes. In a simple numerical method we have to store and solve a matrix with 10'? elements. For
the two-dimensional case, the main matrix will have 10® elements. With 10 grid nodes per variable only very
simple geometries can be described. The large number of matrix elements brings us another computational
problem, the slowness of the codes. In the discretization process of the Fokker—Planck equation, a system
of linear equations is obtained and arranged into a matrix form (coefficient matrix). For the case of a finite
difference scheme discretization in three dimensions with a 25-point molecule, we see that approximately less
than 0.003% of the elements are different from zero. This incentives us to search for alternative and faster
methods, usually iterative, to solved the linear system using only the non-null data. Note that, in general,
the coefficient matrix is not symmetric. So, powerful methods like the Conjugate Gradient [3,4] and Cholesky
[4] decomposition can not be used. Our main goal is to obtain a code that allows us to obtain a fast and effec-
tive numerical solutions on high resolution schemes of the three-dimensional linear Fokker—Planck equation
in a direct way. The importance and difficulties of having three-dimensional solutions of the Fokker—Planck
equation can be summarized in the words of Binney and Tremaine [5, p. 245], here in relation with galactic
dynamics: Finding the particular function of three variables that describes any given galaxy is no simple matter.
In fact, this task has proved so daunting that only in the last few years, three-quarters of a century after Jeans’s
[6] paper posed the problem, has the serious quest for the distribution function of even our own Galaxy got
underway.

We mean by direct numerical calculations of the Fokker—Planck equation a method that is neither statis-
tical nor mean field approximation [5]. Numerical solutions can be performed using statistical approximate
methods like the method of moment equations [7-9] and Monte Carlo methods [10,11]. Also, solutions have
been found using the orbit-averaged Fokker—Planck equation with action-angle variables [5], this last method
reduces the equation involving six phase-space coordinates plus time to one involving only three actions plus
time. Another method that have been used for solving the Vlasov equation with good results is the operator
splitting technique [12,13]. Two-dimensional numerical integration of the Vlasov equations can be found in
[14]. The problem associated with this method is that, even in the two-dimensional case, the time spent in mak-
ing the interpolation is very expensive. Direct three-dimensional numerical calculations of the Fokker—Planck
equations, to the best of our knowledge, has not been done. As we said before, the main difficulty to find the
solution of the three-dimensional Fokker—Planck equation is the large number of linear equations that is
translated in a high computational cost involve in the process. In this article we present a variations of Stone’s
[15] method that leads us to solve with low computational cost the three dimensional linear Fokker—Planck
equation. Variations of Stone’s method has been applied to other situations in two [16] and three [17] space
dimensions when dealing with fluid flow, heat transfer and Laplace equation.

In this article we study how to solve the system of equations that arises from the discretization process using
a finite difference scheme, in particular we used a 25-point molecule, but we have to keep in mind that other
discretization procedures gives practically the same form for the coefficient matrix and this method can also be
applied, i.e. sparse matrices with the same number of diagonals. For example, in two dimensions, the diffusion
equation can be discretized in an uniform rectangular grid by using the finite difference scheme, the finite vol-
ume method (which is a discretization of the equation in integral form) or the finite element method, see [18].
All of these methods gives five diagonals, in the finite element method the number of diagonals depends on the
type of interpolation considered, and the coefficient matrix can be solved by the same numerical method. So,
in this article, we shall not discuss what discretization method is better for the problem considered, we rather
present a numerical method that allows us to find the solution of a coefficient matrix with 25 diagonals that
can be obtained with different discretization methods.

The article is organized as follows. In Section 2 we present the linear Fokker—Planck equation to be solved.
We consider a linear collision term that includes a vast class of collisions. In Section 3, we describe the algo-

M. Ujevic, P.S. Letelier | Journal of Computational Physics 215 (2006) 485-505 487

rithm of the modified Stone method to obtain the incomplete LU decomposition. The discretization of the
Fokker—Planck equation is performed using a central difference approximation for the phase-space variables
(x, v) that is described with a 25-point molecule. This point molecule also allows to describe different discret-
izations in time, as the implicit Euler or Crank—Nicolson discretization. The derivation of the LU decompo-
sition is made without assuming any particular discretization in time, maintaining its derivation as general as
possible. The notation used for the diagonals in the coefficient matrix is also shown. In Section 4, we test our
algorithm with an astrophysical example by solving the Fokker—Planck equation for the widely used Miyam-
oto—Nagai disk potential [19] in three dimensions. The parameters of the model are chosen to represent the
Newtonian potential of a typical galaxy. Also, we used a Fokker—Planck test equation to compare our algo-
rithm with the Generalized Minimal Residual Method (GMRES) that solves large sparse matrices. In Section
5, we show how to modified the code to implement curved boundary conditions. Finally, in Section 6, we sum-
marized our results.

2. The general problem

The linear Fokker—Planck equation can be written as

0 .
af{+v'Vf+v'va:F[f], (1)
where v represent the velocity of the particles, V is the usual gradient, V, is the velocity gradient (derivations
are done with respect to the velocities), v is the acceleration and the symbol I'[f] denotes the rate of change of f
due to encounters (collision term). We consider as the collision term the expression
3 2
2 2 of
F[f] = A(va)v f + B<X7 V)va + C(Xa V)Vf + D(va)vvf + Z E,:,'(X, V) ma (2)
i#j=1 =5

where A4, B, C, D and Ej; are arbitrary functions of the phase-space variables x and v. The equation above
describes a vast family of collisions. In particular, with the mixed velocity derivative term present in (2) we
can take into account the important collision term found by Rosenbluth et al. [20] used in gravitating systems
and plasma physics, see for example [21-24] and reference therein. If we need mixed space derivatives instead
of mixed velocity derivatives, we can use the same code presented in this article to solve the problem. If a par-
ticular problem requires the inclusion of mixed velocity derivatives as well as mixed space derivatives, it is pos-
sible to develop a similar numerical procedure following the steps of this article, but it complicates the
incomplete LU decomposition used for the method, i.e. we need 12 extra diagonals on the coefficient matrix
(37 instead of 25 diagonals).

In Section 4 we solve numerically the stationary linear Fokker—Planck equation (1). In general, Eq. (1)
is non-linear because v = F(f)/m, where F is the force and m is the mass of the particle. Another kind of
non-linearity may arise from the collision term considered. A way to deal with this kind of problem is to
start with a given distribution function at time ¢ from which we can calculate the force and collision term
at this time. Then, this force and collision term are replaced into the Fokker—Planck equation from which
we obtain the distribution function for a later time ¢ + Az. With the recently calculated distribution func-
tion we can calculate again the force and collision term at time ¢+ Az and the process is repeated. An
application for a stationary non-linear problem can be found in [25], in which we found the distribution
function that satisfies both Fokker—Planck and Poisson equation in two dimensions for a Kuzmin-Toomre
thin disk.

3. Description of the algorithm

The system of equations obtained from the discretization of the Fokker—Planck equations (1) and (2) using
the central finite difference approximation for the phase-space and a temporal discretization in time (implicit
Euler, Crank—Nicolson, etc.) can be cast (for each time step) into the simple form,

AP =0, (3)

488 M. Ujevic, P.S. Letelier | Journal of Computational Physics 215 (2006) 485-505

in which 4 is a square coefficient matrix N,oge X Npode (Nnode the number of nodes in the discretization grid),
¥ is the vector matrix of the nodal variable values, and Q is the source vector. The position of the grid nodes
in the phase-space (x, y, z, vy, .y, v:) is performed by six indexes (7, j, k, [, m, n), where i represents the index
for the variable x, j represents the index for the variable y, etc. The ordering of nodes in this six-dimensional
space is made as follows. The surface n = constant are stacked one above another. Within the fifth dimen-
sional space (for each n) the hyper-surfaces m = constant are stacked one above another. Within the
fourth-dimensional space (for each n and m) the hyper-surfaces / = constant are stacked one above another.
Within the three-dimensional space (for each n, m and /) the surfaces k = constant are stacked one above an-
other. Within the two dimensional space (for each n, m, / and k) the index j increases first (y-direction) than the
index i (x-direction). The one-dimensional storage index p of the vector matrix ¥ is calculated from the six-
dimensional grid indexes (i, j, k, I, m, n), i.e.

p=(n— Dnjggm + (m — Vnggg + (1 = Dnge + (k= Dyny + (i = D)n; + (4)
with

i=1-ny; j=1--nj; k=1---ng =1-ny m=1-n, n=1---ny,; 5)

Nijkim = Wiy Ryjrg = NiRGAEALS e = NGRS Ny = WG,
where n;, n;, n, ny, n,y,, n, denote the number of grid points for each variable. Therefore Nyode = nnpnm,, h,.
With the help of the storage index p we can switch each point of the 25-point molecule from the matrix form to
the one dimensional position representation. This is done in Table 1 by making the equivalence f(x, y, z, vy,
vy, v;) = Y(i, j, k, [, m, n). Until now, we considered only the non-stationary case, but the discretization in
Table 1 can be used in the non-stationary as well as the stationary Fokker—Planck equation. In both cases,
the final system of equations is of the form (3), with A being a sparse matrix with elements different from zero

Table 1
Nomenclature and relations between the matrix form and the one-dimensional storage index at node p of the 25 terms used in the
discretization of the Fokker—Planck equation

Matrix form Abbreviation Name Position from node p

Basic diagonals

Y(i,Jj, k, I, m, n) P Point 4

Y(i,j+1,k, [, m, n) N North p+1
Y(i,j—1,k,1I,m,n) S South p—1

Y(i+1,j, k, I, m, n) E East p+tn
Y(i-1,j,k,I,mn) w West p—n

Y(i,j, k+1,1,m,n) T Top p+ny
Y(i,j,k—1,1,m,n) B Bottom p—ny

Vi, j, k, [+ 1,m,n) Ul Upl P+ g

Y(i,j, k,1—1,m,n) D1 Downl P — N

Y(i,j, k,l,m+1,n) U2 Up2 P+

Y(i,j, k,I,m—1,n) D2 Down2 P — Ny

Vi, j, k,l,m,n+1) U3 Up3 P+ Nyim

Y(i,j, k,I,mn—1) D3 Down3 P — Nyjeim

Mixed diagonals

Vi, j, k, 1+ 1,m+1,n) Uur2 Uptop2 P+ (Mg +)
Vi,)k, —1,m+1,n) UB2 Upbottom?2 P+ (g — ng)
Y, j, k,1+1,m—1,n) DT2 Downtop2 P — (Myjpg — nygx)
Y(i,j, k,l—1,m—1,n) DB2 Downbottom?2 P — (Mg + nye)
Y, j, k, I+ 1, mn+1) UT3 Uptop3 P+ (Mijicim + 1)
Vi,)k, —1,mn+1) UB3 Upbottom3 P+ My — 1)
Y, j, k, 1+ 1,mmn—1) DT3 Downtop3 D — (Mijream — i)
Y(i,j, k, 1 —1,mn—1) DB3 Downbottom3 P — (Mjam + Myjee)
Y, k,,m+1,n+1) vu3 Upup3 P+ (Myjicim + nir)
Y, j, k,,m—1,n+1) UD3 Updown3 P+ (Myjieim — Nyra)
Y, k,,m+1,n—1) DU3 Downup3 P — My — Mijka)
Y(i,j, k,l,m—1,n—1) DD3 Downdown3 P — Mg + Nyjir)

M. Ujevic, P.S. Letelier | Journal of Computational Physics 215 (2006) 485-505 489

in only 25 diagonals, see Fig. 1. Now, we want to develop an iteration method in order to solve the system of
Eq. (3). After 4 iterations of such method, the approximate solution ¥” do not satisfies (3) exactly, their is a
non-zero residual R such as

AP" =0 —R". (6)

The purpose of the iteration procedure is to drive the residual term to zero after some number of iteration
(actually we stop the iteration when the residual term attained some imposed small value condition). Let us
consider an iterative scheme for a linear system in the form

MY = 0¥ + B, (7)

when convergence is achieved we must have that A = M — O and B = Q. An alternative version of this pro-
cedure can be obtained by subtracting MY¥" from both sides of (7) to have

MAh+l — Rh, (8)

where A" = ¢! _ 9" and R"=B — (M — O)¥" = Q — AP". Any effective iterative method to solve (7)
must be cheap and converge rapidly. For faster convergence, the matrix M have to be a good approximation
of the coefficient matrix 4, i.e. we must have O¥" small. The original idea of Stone is to use for the iteration
matrix M an incomplete LU decomposition of the matrix 4. The reason for this choice is that LU decompo-
sition is an excellent linear system solver. The matrices L and U have elements different from zero only in the
diagonals in which 4 have also elements different from zero. The product of the matrices, L and U, provide a

ijkim

Fig. 1. Form of the coefficient matrix 4 obtained from the discretization of the partial difference equation of our problem. The separation
between the main diagonal P and the other diagonals are indicated. Also, the distance between the diagonals of the mixed derivatives to
their nearest diagonals are shown. Note that the figure is not in scaled.

490 M. Ujevic, P.S. Letelier | Journal of Computational Physics 215 (2006) 485-505

N

AN

Fig. 2. Schematic representation of the matrices L, U and their product M. The multiplication of the matrices L and U leads to extra
diagonals (dotted lines) not present in the coefficient matrix 4. The diagonals of L, from the left-bottom corner to the main diagonal, are:
DD3, DB3, D3, DT3, DU3, DB2, D2, DT2, D1, W, S, P. The diagonals of U, from the main diagonal to the right-up diagonal, are: 1, N, E,
T, Ul, UB2, U2, UT2, UD3, UB3, U3, UT3, UU3. The diagonals in M are products of these two sets of diagonals but we have to be careful
because more than one product can be at the same diagonal.

matrix M with a larger number of diagonals with elements different from zero, see for instance Fig. 2. To make
the decomposition LU unique, we set the elements on the principal diagonal of U equal to 1. In doing the LU
multiplication, we have to pay extra attention because sometimes more than one diagonal product are at the
same distance from the main diagonal P, e.g. the product Lps - U; and Lpps - Uy, are at the same diagonal in
M. The multiplication rules for matrices furnish the elements of M = LU at node p (see Appendix A), where
for example, My s represents the diagonal in M that is obtain from the multiplication between the elements
of the diagonal S in L with the elements of the diagonal UU3 in U.

Now, we choose L and U in such a way that M(= A4 + O) is the best possible approximation to A. The
standard method for decomposition is to let O to have elements different from zero in the diagonals of M that
corresponds to the diagonals not present in 4 and to force the other diagonals of M to be equal to the cor-
responding diagonals in 4. But this method converges slowly because the resulting matrix O is not small.
Stone recognized that the convergence of the method could be faster if we allow O to have elements different
from zero also in the diagonals present in A. The key idea is that the contribution of MV of the diagonals not
present in A4 partially canceled the contribution of OY of the diagonals present in A, in such a way that

oY ~ 0. 9)

Note that in (A1) they are diagonals in M that present more than one term. In general, the principal diagonals
have more than one element, as for example Mpz3, but beside these principal diagonals there are other no-
principal diagonals that have more than one element, like Mp3 yp.. Now, relation (9) can be written for
one grid node in several ways. The usual way is to consider the elements of these no-principle diagonals as
part of the same diagonal. Other way is to consider these elements as they were from different diagonals, thus
in this case, following the above example, the no-principal diagonal Mps3jyg, is split into two diagonals
M p31up2 and M pp3|». We obtained the final relations for the LU decomposition in both ways and we found
that the LU decomposition considering the elements as they were from different diagonals is faster by a factor
of 2. Hereafter we consider this case. The explicit form of Eq. (9) is given in Appendix B.

The problem now is to defined the elements of O to satisfy Eq. (B1) without introducing additional
unknowns. If we expect the solution of the partial differential equation to be smooth, we can approximate
the values of ¥ gy, ¥ nw- etc, in terms of the values of ¥ at nodes corresponding to the diagonals of A. Stone
proposed the following approximations (other approximations are possible),

Vo = o(Pg+ Py — Pp),

(10)
'}IW\N ~ OC(WW + WN — q’p)7 etc.,

where o is a constant. Stability analysis made by Stone requires that o must be between 0 <« < 1. Replacing
the above approximations into (B1) we obtain the elements of O as a linear combination of the elements of M,
see for instance Appendix C. Now, using the relation M = 4 + O together with expressions (A1) and (C1), we
find that the elements of the matrices L and U are given by

M. Ujevic, P.S. Letelier | Journal of Computational Physics 215 (2006) 485-505 491

AP —C
I, = -M ™) = DD3, DB3, D3, DT3,DU3, DB2, D2, DT2,D1,B, W, S,
X1 1+ oKy
—1 —n; —njj —Nij) —(”z/ _”z/‘> —hjj
U;’ = Aﬁ - L_vai/ - L;VUZ‘ - LZUI; - L/EIUIZJI ' _LgTZUfJBZ e — LPDZUIZJZ .
—(nijki+niji) —(Rijkim—nijk1) —(Rijkim—nijk) —Mijkim
- LgBZ UZTZ e — Ll1))u3 Ull)/m ! i Lgm Ulljst ! . ng Ulz?B ! (1 1)
— Lipgs UfJ_TgnWWHW — Lipps UZ?;UMWHW) +a(Ky + Kg + Ky + Kyi + Kupa + Kva + Kur
+ Kups + Kups + Ky + Kyrs + Kyus),
P A'[UX] — oKy — C[X] v
= IX] = N,E, T, U1, UB2, U2, UT2, UD3, UB3, U3, UT3, UU3,

s ’
where the explicit form of the functions C;xjand Ky are given in Appendix D. The elements of the LU decom-
position have to be calculated in the order specified in (11). In doing this, we must take into account that a
certain element is considered equal to zero if its storage index is less or equal zero, e.g. if p = 3 and n; = 5 then
the elements with index p and p — 1 are different from zero, and the elements with index p — n;, p — ny;, etc are
equal to zero. When mixed derivatives are not present we must set all the elements with index DD3, DB3, DT3,
DU3, DB2, DT2, UB2, UT2, UD3, UB3, UT3, UU3 equal to zero. Once obtained the LU decomposition, the
system of equation is solved combining M = LU with (8) to obtain

LUA™! = R, (12)
and here we set

LY" = R,

UAh+1 — Th (13)

from which we obtain the solution of our problem by solving two triangular systems. In this iterative method,
the matrix elements of L and U are calculated only once before the first iteration. In other iterations, only the
residual R, and A are calculated using the two triangular system mentioned above, i.e.,

TP = (R‘" — LIED}TP—(WUMM—HW) — LgBBTp_(l’lijAIm'Fnijk) — Lg3TP—n"jk1m — L%TBTP_(”’fk’m—”ijk)
] L[Z’U3Tp7(n"/"”"7”ff’d) - LIZ)Bszf(”"f“Jr”f/U — LB rP" — L[Z)rsz*(mjk/*ni/A) — Ly, Y7
R Y (14)
NP =7P — UI[7]U3AP+(ﬂifklm+ﬂi/k1) — U%TSAP+(ﬂ:/k11);+ﬂi/k) _ UIZ]3A’7+""/"‘"” _ Ul[’]BzApHn,-,-k,m,,,”k)
_ U@D3AP+(miszyrmifk1) — U%T2Ap+<nijk1+ni/k) — U%zA!“rni/kl — U@BZAPH"U;{/*",,-,() _ U{,IA””M
_ U?—AP‘*'”U — UZAP-H:J- - Uﬁ,AP‘H’
where
RV = QF — ABWP — AR PP AR PP g gy gD ppy _ gP g P
— A PP — 4P p+(mijg —nije) A, pp— (i =nije) AL, Wi — AR i gP 4
_ A%BZ Pp— (i +nije) A?/D3 Pp+ (iim—nikt) _ Agy3 = (mijim—nigkt) _ A?J}B Ppt(nijem =) _ APD” i)
_ AIZB PP thim All))3 PP Mijkim A[Z]T3 o+ (nijram i) A%BS =i+ _ AI(’]U3 o)
— A%D,% qlp*(nifklannijkI)’

in which, for simplicity, we have omitted the iterative index A.

4. Test results and comparisons with other methods

As was mentioned in the Introduction, the huge number of nodes needed to solve the Fokker—Planck equa-
tion leads to large amount of data that has to be stored in a matrix, this fact reduces the possible codes for

492 M. Ujevic, P.S. Letelier | Journal of Computational Physics 215 (2006) 485-505

testing the results. Furthermore, in general, the Fokker—Planck equation (1) is not symmetric, and for that
reason other methods can not be used. In this case, the Generalized Minimal Residual method (GMRES)
[26] is the most appropriate choice. The GMRES method belongs to the class of Krylov based iterative meth-
ods [27-29] and was proposed in order to solve large, sparse and non-Hermitian linear systems. This section is
divided into two parts. In the first part, we apply the method presented in this article to a physical example. In
particular, we choose the astrophysical problem of finding the distribution function of the Miyamoto—Nagai
disk in three dimensions. In the second part, we used a simplified version of the physical example to make
numerical comparisons. We compare our method with the best available method in solving huge sparse matri-
ces, i.e. GMRES. We prefer to make the numerical comparisons with the simplified version of the physical
example because the large amount of parameters present in the physical example make the analysis cumber-
some. This analysis is important because we show some advantages and limitations of our method.

4.1. Physical example

To test of our code we begin with an important astrophysical application, i.e. solve the Fokker—Planck
equation to find the distribution function of the Miyamoto—Nagai disk [19]in three dimensions in a stationary
regime. The Fokker—Planck equation to be solved is [5]

3 3 2
0 1 0
. v-V,.f =— —I[f D(Av; — —f D(Av;Av; 1
V-V V- VS ; 5 I/ (X V)D(Av)] + 3 ; 50,0y, (% Y)D(AviAw)] (15)
wherev= -V, & = — oM , G is the gravitational constant, M is the total mass of the system, a
\/x2+y2+(a+\/ 22+b2)2

and b are parameters that depending on the choice the potential can represent anything from an infinitesimal
thin disk to a spherical system, and the functions D(Av;) and D(Av;Av;) are known as the diffusion coefficients.
These diffusion coefficients were calculated by Rosenbluth et al. [20] considering a test star of mass m moving
through an infinite homogeneous sea of field stars of mass m, who has mean velocity equal to zero. Moreover,
the interaction between the particles are ruled by an inverse square force, and also, each stellar encounter in-
volve only a single pair of stars and are independent of all others. These diffusion coefficients are simplified if
the field stars distribution function is a Maxwellian distribution. The explicit form of these coefficients are [5]

D(Av,) = %D(AUH), (16)
D(AvAn) =2 [D(szl) _ %D(Avi)} F10,D(A), (17)

where D(Av)), D(Av}) and Av? are given by
3 4nG*p(m + m,) In AG(X)

D(AUH) = 2 , (18)
D(AR) = 4\/§nGapma InA Gg() 7 (19)
DA) = 4\/§TcGi‘pma In A [erf(X)X— G(X)} 7 20)

where p and o are the density and velocity dispersion of the field stars respectively, X = v/(v/20), erf(X) is the

. 2 bmaxt?
error function, G(X) = # [erf (X) - %e’X], A= ;"j:), bmax is the maximum possible impact parameter

(usually set of order the radius of the system), and vy, is a typical velocity of stars in the system. We shall
find the solution of Eq. (15) in a six-dimensional ‘box’ using 10 grid nodes for variable that leads to a problem
involving 10® unknowns. If we want to solve this set of equations using a conventional solver we need to stor-
age 10'? elements in the coefficient matrix. We considered that the ranges of the velocities vy, v,, and v, are
between [—350 km s™', 350 km s~'], the ranges of the coordinates x and y are between [—40 kpc, 40 kpc],
and the coordinate z between [—1 kpc, 1 kpc]. At the borders of the ‘box’ we used a Dirichlet boundary con-

M. Ujevic, P.S. Letelier | Journal of Computational Physics 215 (2006) 485-505 493

Distribution Function

0.00012
0.0001
8e—05
6e-05
4e-05
2e-05

0

Fig. 3. Numerical solutions of the distribution function of Eq. (15). Top: surface distribution for the case with vy~ —117km s,

v, =~ 39 km s7!, v.~—272kms' and z~ 0.55kpc. Bottom: velocity distribution for the case with x ~ —22.23 kpc, y ~ 13.32 kpc,
z~ —0.11 kpc and vy ~ 117 km s~ .

dition of the form f = exp[—(x* + y* +2°) /20| exp[—(v] + v} + v2)/207]. We set the parameters a = 4 kpc,
b=1kpc, m,=m= Mg, o,= 10 kpc, o, =100 km s7h Uyyp = 200 km s~ !, bmax = 40 kpc and the total mass
M=10"M, o- The values set for the parameters correspond to typical galaxy data like the Milky Way. Also,
as a first approximation we spread the total mass uniformly along the disk and set the density p = constant. In
Fig. 3, we present two graphs of the distribution function that represent the numerical solution of (15). One is
the surface distribution function on the plane x — y and the other is the velocity distribution function on the
plane v, — v_; they are plotted at different points of the grid. We note that these figures have Maxwellian form
as it should.

4.2. Numerical comparison

In the next example we shall compare our code based in the LU decomposition (11) with the GMRES
algorithm. The problem of this method is that the storage of the orthonormal basis may become prohibitive
for some matrices, this storage depends on the value of the restarting parameter. The restarting parameter
of the GMRES algorithm determine the number of the orthonormal vectors for the Krylov subspace that
the code stores in order to calculate the updated solution and residual at each time step. At each time step
the code stores one vector. After a number of steps equal to the restarting parameter, the code construct the
most recent update and use it as a first guess to restart the next set of iterations. The convergence of the
method is guaranteed for large numbers of the restarting parameter, but this means that more vectors have
to be stored and computer memory problems may appear. We can use lower values of the restarting param-
eter but this increases the time spent in finding the solution. In particular, we used the gmres routine of
Matlab because it can handle sparse matrices. We also used a public GMRES software [30], this software
allows us to choose between different kinds of preconditioners and orthogonalization procedures but its
drawback is that can not handle sparse matrices. We choose as a test equation a stationary Fokker—Planck
equation similar to the physical example of the previous section. Note that in the non-stationary Fokker—
Planck equation we can perform a Crank—Nicolson discretization in time, which is also an implicit proce-

494 M. Ujevic, P.S. Letelier | Journal of Computational Physics 215 (2006) 485-505

dure, and the method presented in this article can be applied. The stationary Fokker—Planck equation con-
sidered for the test is

. R 32
V.Vf+v-VU_f:—Vv,f+§i;1 6vi60j+ﬂ;6_1),2’ (21)
where V= —V®, & = 1/4/x2 + y? + 22 + 1%, and f is a constant. The form of Eq. (21) is similar to the equation
found when Rosenbluth potentials [20] are used in a gravitational potential ¢. Note that the collision term has
mixed velocity derivatives and that the resulting coefficient matrix from the discretization is non-symmetric.
We used central difference and a 25-point molecule to perform the discretization of Eq. (21), see also Table
1. Here, we find the solution of the above equation in a six-dimensional ‘box’ of length 1.22 units. At the bor-
ders we used a Dirichlet boundary condition of the form f = exp(—x* —)* — 2*) exp(—v; — v; — v2).

We first started with coarse grid of four points per variable that leads to a matrix of 4096 elements (in this
number we are not considering the border grid points given by the boundary condition) and = 1. We found
for this case that our method spent approximately 0.2 seconds to find the solution (all the calculations were
perform with a Pentium IV of 1.8 GHz, the Fortran code was compiled with the Linux free compiler). We stop
the iteration when Z;’:l(A§“) < 107'°. The gmres routine and the public GMRES code [30] spent approxi-
mately 0.35 and 3 seconds respectively to solve the system of equations with the same stop criteria, but it could
be more if we choose wrong the restarting parameter. Here we are considering only the time spent to solve the
coefficient matrix and not the time due to create the coefficient matrix and upload it into the code. In our code,
we only upload 25 vectors of approximately Npoge.

For a grid of five points per variable some code compilers can not allow the storage of the coefficient matrix
because is too large 5'2, approximately 244 millions of elements. This was the case of the public code because it
can not managed sparse matrices. For this number of grid points the modified Stone method was almost 7
times faster than the gmres routine. In Fig. 4 we present the efficiency of our method compare to the gmres
routine. Note that when we increase the number of grid points the efficiency also increases. For a grid of nine
points per variable the gmres routine can not managed to find the solution in one iteration because we have
computer storage problems. To handle this, we lower the restarting parameter to the maximum possible value
that avoids this problem. For a grid of 10 point per variable the number of elements in the coefficient matrix
increases to 10'2. Our code can managed this huge amount of data in a faster and efficient way. The time spent
for this case was approximately 85 seconds. This should be the time spent for each time step in a non-station-
ary problem, which is a great result considering the number of nodes in the grid and the precision attained
with the stop criteria. The variation of a between the accepted limits 0 < a <1 slightly alter the time spent
in finding the solution. In Fig. 5, we present two graphs of the distribution function from the numerical solu-

20

Times Faster
=
I

0 T T T T T
4 5 6 7 8 9 10

Number of Grid Points (X")
Fig. 4. Efficiency of our modified Stone method when compared to the gmres routine of Matlab that handles sparse matrices. When we

increase the number of grid points our method becomes more efficient. To handle the 9° and 10° grid in our computer, we lower the value
of the restarting parameter of the GMRES routine to the maximum possible value that avoids computer memory problems.

M. Ujevic, P.S. Letelier | Journal of Computational Physics 215 (2006) 485-505 495

Distribution Function

Fig. 5. Numerical solutions of the distribution function of Eq. (21). Top: surface distribution for the case with v, ~ 0.38, v, ~ —0.5,
v.~ —0.5 and z ~ 0.16. Bottom: velocity distribution for the case with x ~ —0.39, y ~ 0.06, z~ —0.17 and v, =~ 0.28.

tion of Eq. (21) for a grid of 10 grid per variable. One is the surface distribution function on the plane x — y
and the other is the velocity distribution function on the plane v, — v_; they are plotted at different points of
the grid. Note that these figures have not Maxwellian form because Eq. (21) is not in the collisional regime for
the parameters considered in the collision term. This example was chosen only for didactic reasons.

Note that when we used central difference for discretization of Eq. (21), the only contribution to the main
diagonal comes from the last right hand term, i.e. the term with . For some values of § <1 our code diverge
because our resulting coefficient matrix is not diagonal dominant. For the same value of f3, the gmres routine
converges. The break in convergence at these values of § coincide with the appearance of negatives values on
the distribution function solution found by gmres. We know that one of condition to attained a physical solu-
tion of the Fokker—Planck equation is that the distribution function has to be always positive. It is remarkable
that for Eq. (21) our code diverge when physical solutions are not possible, this could be an indication that we
are applying a wrong scheme for discretization or that we are not describing well the physical phenomena con-
sidered. As we said in the Introduction, other discretization scheme may be applied to avoid this problem.
Thus, in our method the convergence is conditioned to the form of the functions present in (1) and (2), i.e.
physical considerations; and to the difference scheme applied for discretization, i.e. numerical implementation.
For a non-stationary scheme the Crank—Nicolson decomposition in time is suggested because it has implicit
character and it is usually more stable than other methods, but strictly speaking, the stability of the system has
to be studied for each particular case considered.

5. Domains with curved boundaries

The LU code was tested in the previous section with a structure-orthogonal grid but this does not mean that
it can not be applied to more general geometries. To handle a non-square domain we proceed as follows. First
we make a square structured grid with Nyoqc = namnm,,n, nodes, then we label them according to the index p
defined in (4). Later, the nodes that laid outside the boundary regions are not considered for the calculations.
Now, lets see this procedure in an example. For didactic purpose we used only the one-dimensional case of the
Fokker—Planck equation in which we have two variables (x, v,). In Fig. 6 is depicted in the two dimensional

496 M. Ujevic, P.S. Letelier | Journal of Computational Physics 215 (2006) 485-505

S~——

o

Fig. 6. Application of the incomplete LU decomposition to a general domain Q with curved boundaries Qp. The square structured grid
leads three classes of grid points: interior points (full circles), boundary points (empty circles) and exterior points (triangles).

plane (x, v,) a domain region Q2 with boundary Q5. The domain Q is filled with a square structured grid that
leads three classes of grid points: the interior points in which the normal discretization procedure can be done;
the boundary points in which special care have to be taken when Dirichlet, Neumann or mixed boundary con-
ditions are applied; and the exterior points that have to be neglected for the calculation, see Fig. 6.

The incorporation of the Dirichlet boundary conditions using central differences for the boundary points of
region Q can be done using a Taylor expansion around the nearest nodes. For example, in Fig. 7, we take the
nearest boundary points for point 1: the internal node (node 2) and the point at the boundary Qp (point E);
and make two Taylor expansions around point 1. These expansions give us (our conventions are: partial deriv-
ative with respect to the coordinate x denoted by (,x); Ax is the discretization interval in the x direction),

2
W =W, +bAXV, + W% ¥ . + O[AX],
(Ax)z. (22)
Wy = W)~ AW, s o+ O[AYY),

- Ax > bAx —

v% v, v \QB

X X X

\

Fig. 7. Schematic representation of a five-point molecule for the finite difference approximation of the derivatives in the plane (x, v,) for a
boundary point. Below, we see different boundary situations that can occur in the numerical computation depending on the discretization
grid and boundary S.

M. Ujevic, P.S. Letelier | Journal of Computational Physics 215 (2006) 485-505 497

eliminating the second order derivative between these equations we can express the partial derivative at a
boundary point as
1 1 b 1-b

e A A T R (23)
When b =1 we recover the usual expression for the central derivative. The same procedure can be applied to
the northern boundary, between node 3 and point 4, and to the different types of boundary nodes in Fig. 7.
Also, partial derivative of higher orders and mixed derivatives can be found in a similar way. Furthermore, it
is also possible to implement Neumann boundary conditions in an irregular boundary using finite difference,
see for instance [31].

The exterior points of Fig. 6 are strictly necessary to maintain the ordering of the nodes in a domain with
curved boundaries. This ordering is needed by the code to operate normally but they do not enter into the
calculations. To implement this condition, we have to set the values of the elements LZ[’X], L5, U‘E’X], R’ ? and
A? of the external grid point (each exterior point has a position p from the one-dimensional storage index)
equal to zero.

An application of the LU method in a two-dimensional Fokker—Planck equation (x, y, vy, v,) with curved
boundaries, as well as the incomplete LU decomposition for this case can be seen in [25]. Here, the distribution
function of a stationary gravitational thin disk is calculated. Note that in order to obtain the elements of the
LU decomposition for the two-dimensional case, we have to start the calculations from the beginning, i.e. we
can not used the elements found in the three-dimensional case.

Y,=

6. Concluding remarks

We have developed a variation of the incomplete LU decomposition proposed by Stone that solves the
three-dimensional linear Fokker-Planck equation. The method presented can manage the large set of linear
equations that appears from the discretization procedure. The convergence of the iterative process is done
in a fast and effective way. Also, this method can be easily adapted to support irregular boundaries with
Dirichlet, Neumann or mixed boundary conditions and can be used to follow the evolution of a distribution
function for non-stationary equations. In this case a Crank—Nicolson discretization in time is recommended
because it has implicit character and is more stable than other methods, but strictly speaking, the stability of
the system has to be studied in each particular case considered. The good properties that our method shares
and the lack of methods that handle the large amount of data (given by the Fokker—Planck equation with six
independent variables) make the method presented in this article worthy and advantageous. In general, the
algorithm presented in the article can solve the system of equations that arises from the discretization of
the Eq. (1) or similar equations (with or without the mixed derivatives), but we have to keep in mind that
its convergence is conditioned to the form of the functions v, A(x, v), B(x, v), C(X, v), D(X, v) and Ej(X, v) that
appear in the collision term (2).

Appendix A. Elements of M = LU at node p

In this section we present how the elements of the matrix M are related to the elements of the upper U and
lower L matrices:

P —JP
MDD3 - LDD37

Mippsy = Lops U i <ni’k1”’+”ffk1)’
Mf)m‘g =L, U!‘;*(m,-kznﬁn,-,-k,)’
Mgm\T = Lpp U 1}7 (it +”i.fk1)7
MZD,%\UI =10 Ull’j_l(”z//c/,,,-#n,/,d)7

P _ P P p—(nijkim+nijer)
MDB3 - LDB3 + LDD3 UUBZ)

498 M. Ujevic, P.S. Letelier | Journal of Computational Physics 215 (2006) 485-505

M1533|N = L"Z)B3 U;’;(ﬂf/um+n[jk),
MgB3|E - L%BB UZ*(ni/k1m+nUk)7

My DB3T = LY s Ul;("xifkh,ﬁrn,-jk),

M? D3 — L D3 +LDB3 UIZJ (Mijktm+nijic) +LDD3 Uf];(n’f"/'”+”ifk1)7
MD3\N = UI; nr/klm’

MP D3|E — UZ*”ijkzm ,

Mfl%\T = %3 U‘;”f/klm’

» P P— nuum (Mijktm~+nijur)
MDT3_L T3+L U +LDD3UUT2 ?

MZH‘N DT% Up "uklm—nw)7

M), DT3|E — Lbrs U?(ni"”'”’"ifk)’

ME)TMT = Lgﬂ U;_("ijk/m—n,ﬂ),

M$T3\Ul - LDT3 U nl/]tlm*ﬂ,,k),

Mg DB3|UB2 DU Uszn"k""+"‘fk)7

M D3|UB2 U UB;””m + L7 s U m/klm+nl/k)7

M3 = Ly + LU Z;g”,ykzm —nije) Up Rin | ,, UUT;’/“”’“U")’
MDU3\N pU3 Uf;* ”ukl,rrq]k,)7

MDU3\E L s Uy ”r/kurrz,,k,)7

MDUS\T . W!m*ﬂuu)7

MDU3‘U1 - LDU3U - akim=rig) + LDT3U —(ijkim —nijk) + L UuT’;”ka
MDT3\U7~2 =1 UUTZm/k/m7:1,-].,{)7

Mpusiom = Lpus U o =)

MDU3\U2 = LDU3U "'fklm*n,;,k,),

M DU3|UT2 — LDU3 U Un”‘f’f’m—”w),

P~ (ijkim k1)
UUD3 ’

MY

DD3|UD3 — = Lipps

(ijetm+niji) (ijktm+nijir)
MDBZ - LDBZ + LDB3 UUD3 + L DD3 UUB3 ?

D g p—(nijrr+nijk)
Mgy v = Lpp Uy)
p _ 7P p—(nijk+nije)
Mo = Lpp Uk)
P p—(nijrr+nik)
MDB2|T = LppUr)

P —(niji+niji) D~ Nijkim D~ (Mijktm+1ijk)
MD2 - L + LDBZU + L UUD3 + LDD3 UU3 .)

P _ P—Nijki
MDZ\N - LDZ UN ’
P TP P—Nijki
MDZ\E — D2 UE ’
P P—Nijkl
MDZ\T D2 UT ’

P _ P— "”u (Mijktm—nijk) (Mijktm+ijir)
M DT2 L 'DT2 + L U + LDT3 UUD3 + LDD3 UUT3 ?

M. Ujevic, P.S. Letelier | Journal of Computational Physics 215 (2006) 485-505

M[17)T2|N = LIZ])Tz Uf;'v*(n;j,{,7,1[1*)7
Mgnw = LII)DTz Ulgf(nf/kz—ni/.k)7

MDT2|T Ly, UI;*(n,-jk,fnfjk)7

Mg”IUl = LgTz UP*("ijszn,-jk),

Mg = LppU UanzlkI‘Hlx/k) - UUB3nlM"+n”k)’

PP p 7PNkl — (miji+niji) D~ Nijkim D= (Mijkim+nijk)
MDI LDI + LDZ UUBZ + LDBZ U + L UUB3 + LDB3 UU3 . ?

M[an =Lp, U?n'jk,
Mp DIE = %1 U?nijk)
Mm\r =Lp, Ul}in”k,
Mp = LII;)

PP
M = LU,
P __ PPN
MBE*LBUE ,

M Wa
MW|N - LI;V Uﬁ;"/)
M? = Lg,
Mb = I + LEUS + Lo, UL 4 L5US™ 4 LB, U™ 4 Ly Ul ™) 4 g
+ L[Z)Bz UZ;(znfjk1+”i/’k) 3U ":/klm*ﬂ:/kl) 3UUB3"1/k1m*ﬂ:/k + L UP jjkim
- UUT(3'luk1m +"’uk> - U ﬂ:/k/m +n; ,k/)
Mp = PUN7
MS\E = L{S)'U[b)jl)
M2 — 12U,

p PN
MW|T_LWUT ,
P _ gpyp-l
MS‘T—LSUT ,

My = [RUY,

M[l;|Ul :LpU "ll
MWIUI L, Up Y
Msm :Llslezjﬂla

M — [P —(nijri—nijk) nijki D~ (Mijkim =ik ijeim
Ul LPU +LDT2U +L UUT2 +LDT3UU3 +L UUT3 ’

M, DT2|UT2 — = Ljpp Uurzn”kl) + Lirs UUT;WW”‘M%
MDI\UB2 Ly, UUB;”kv

M BlUB2 — = Lj Uw;zma

M, W|UB2 — =L Ull)/B;,’

_qr
MS\UBZ L UUBZ7

P _gp —1jjk (Mijktm —"ijkr) (Mijkim+1ijx)
Mgy = LpUl gy + L Uy ™ + L3 Utgs + Lhss Ul ,

=I5 U n”
Lp UP "/

MP
MY

BlU2 —

wiu2 —

499

500 M. Ujevic, P.S. Letelier | Journal of Computational Physics 215 (2006) 485-505

—_JP
MS\Uz L UU2a
LU? Pyt i P~ (ijim —nijus) —ijkim
MU2 _LPUUZ +LD1UUT2 +LDU3UU3 +L UUU3 ’

__ PPN
MB|UT2 - LBUUT2)

P _ p—n;j
wUT2 LWUUTz)

M

MS\UTz =L UUT27
M2 = LU + LB Ul i) g g ki)
M?

DU3|UU3 — Lpys UUU; llk[m*nim),
My, DB2|UD3 — = Lip UUDSnUM +n”k),
M7 D2\UD3 = Ly, Urps,
M DT2|UD3 = = LppU UD3" e niik),
M, DB2|UB3 — = LppU UB;WMW,
MZI\UM LDl UUDnal]k + LI1732 U f/}?’"’ + LogzU nwﬂuk)a
Mups = LUty
MW|UD3 =L, UIZ;;/,
Mg\Um L UUma
MYy = LUl ps + Ly, U UB3n”klin”k U3 UL LppU Iz/rgn'jk]+nuk)a
M IZ)T2\U3 = Lgrz Ut niiklin”k) + L), U [;Tgiikla
Miyraurs = Lir UUT;W),
MDI\UB% = Lgl UIZ/BZUka
buss = LU sy’
wioss = Ly Uty
s|uB3 = = L UUB3)
Ups = LpUlgy + L Uy ™ + LDBZUUU; k),

LP UP ’Iz/
— LP UP n_/

M?

M

M?

M

MB|U3

MW|U3

MS\U3 = LPUU3)

My = LU + Ly, Ut + Ly Up i,
My = LpUury

MW|UT3 =L UAI[)Jnga

MS\UTS LPUUT37

MUT3 - Lp UUT3 + LDT2UUU;'UM nl]k)?

My 003 = Lo Uy

MB|UU3 L U?/Unz”a

MW|UU3 Lp Ull’/l]”é?

M S\ou3 — L UUUS?

M7

P
vus = LpUlys-

M. Ujevic, P.S. Letelier | Journal of Computational Physics 215 (2006) 485-505 501
Appendix B. Explicit form of Eq. (9)

In this section we present the explicit form of O¥ = 0 for each grid node:

Opp3¥pp3 + Opes Vpss + Opz Pps + Oprs Vprs + Opus Pous + Oppa o + Opa P2 + Opra Ppra
+ Op1¥p1 + 0¥+ Op Wy + Os¥s + Op¥p + OyWy + O Ve + Or¥r + Ot Vi
+ Ous2¥up2 + Ova¥ua2 + Ovr2Yura + Oups Wups + Ouss Wuss + OusWus + Ours Wurs
+ Ouus ¥ uus + Mppaw Yoy + Mpp3ie¥ ppsje + M ppsjr ¥ ppsir + Mppsjut Yop3jut
+ Mpg3in W psainv + M ppsje W pssje + Mpgsir P pssir + Mpaw sy + Mpsje¥osje
+ M p3r W psjir + Mpraw Yorsw + Mpr3eYorse + Mprsr Yorsir + Mprao Y orsju
+ M pg3jus2 Wpssjus2 + M p3ju2 Y pssjvz + M pajus2 Y p3jus2 + Mpusiy Y ousw + MpusieYousie
+ Mpu3ir Vousir + Mpsjur2 ¥ psjur2 + Mpraw2 Yorsjwa + Mpusjvt Yousjur + Mprsjwr2 Worsjurz
+ Mpuzjus2 ¥ pusjusr + M pusju2 ¥ pusjvz + Mpusjur2 Yousjurz + Mppsjups ¥ pp3jups
+ M ppow W psav + M ppaie ¥ psoe + Mpeajr Wpsor + Mpony Y poy + Mpoje Y poje
+ Mpojr ¥ poyr + Mprow Yoraw + Mpraje ¥ orae + Mpror Worar + Mprao Yorajon
+ M p3juss W pssjuss + M pe2jus2 Y psajus: + Mpin Poiw + Mpre¥oie + Mpyr¥Pour
+ Moy +Mpe Wi +MyyPwiy +Mse¥sie + My Vir + Mg Wsr + Mpu Veju
+ My w1 Yot + Msjui Ysjur + Mpraur2 Y orajurs + Mprsjurs ¥ orsjurs + M pijus2 ¥ pijus2
+ Mpus2 Vs + M us2 ¥wiusz + Msjus2 sjus2 + M w2 Vv + Myu2 w2
+ M2 ¥siu2 + Mpjur2 Yaur: + My ur2Ywur: + Msjor2 sjurz + M pusjvus ¥ ousjvus
+ M pp2jup3 ¥ ps2jups + M pajups ¥ p2jups + M prajups ¥ prajups + M pgajuss ¥ psajuss
+ M p1jup3 ¥ p1jups + M pojuss Wpojues + M peaus ¥ ps2us + M ejups ¥ sjups
+ Myups Ywiups + Msjups Wsjups + Mpraws ¥ oraus + Mpojurs Yoours + Mprajurs Yprajurs
+ Mpruss Wpruss + Mjuss Vajuss + Mwiuss Viyuss + Msjuss '¥Psjus3
+ M3 ¥sius + My jus¥wivs + Msus¥sius + Mpurs Veors + My urs Wwors + Msjors sjors
+ M pijous ¥ pijvus + Mpous sjous + Mooz Ywivus + Msuus Wsjous = 0. (B1)

Appendix C. O as a linear combination of M

In this section we present the elements of the matrix O as a linear combination of the elements of matrix M
using the relations (10):
Opps = —o(M pp3y + M pp3je + M pp3jr + M pp3ju1 + M pp3jups),
Opgs = —a(Mppajy + M pp3je + M pgsjir + Mpgsjusz + Mpssjuz + M psjuss)
Ops = —a(Mp3py + M p3jg + M p3jr + Mp3jus: + Mp3jura),
Oprs = —o(Mpray + Mpraje + Mprair + Mprajut + Mprajuz + Mprsjurz + Mprajurs),
Opusz = —a(Mpusiy + Mpusie + Mpusir + Mpusur + Mpusjus + Mpusjvz + Mpusjura + Mpusjuus)s
Oppr = —o(M pgojv + Mppaje + Mpeoyr + Mpeojus2 + M pgojups + M pgajuss + Mpsous),
Opy = —o(M poy + M paje + M pojr + M pyjups + M pajuss + M pajurs),
Opra = —o(Mpraw + Mprae + Mproyr + Mprojut + Mprajurs + Mprojups + Mprajus + Mprajurs),
Op1 = —a(Mpiw + Mpyg + Mpir + Mpijus2 + Mpijups + Mpijuss + Mpijuus),
Op = —o(Mpy + Mpig + Mpjy1 + Mpjusz + Mpjuz + Mpjur: + Mpjups + Mpjuss + Mpjys + Mpjurs + Mpuus),
Ow = —o(Myx +Myr + My + Myjuss + Mwjvz + My ura + Mwjups + Myuss
+ Myus + Myurs + Myuus),

502 M. Ujevic, P.S. Letelier | Journal of Computational Physics 215 (2006) 485-505

Os = —a(Msjg + Msir + Mgju1 + Msjup + Msjua + Mgsjur + Mgjups + Msjuss + Msjus + Mgjurs + Mgjuus),
Op = a(Mpp3jny + M pp3je + M ppsjir + M pp3jui + M pgsiy + M pgsje + M pgsjr + Mpsy + Mp3je + Mpsjr
+ Mpran + Mprije + Mpryr + Mprajut + Mpgsjus2 + Mpe3ju2 + Mpsjusa + Mpusy + Mpusie
+ Mpusir + Mp3jura + Mprajwz + Mpusjur + Mprijur: + Mpu3jusz + Mpusjvz + Mpusjur
+ Mpp3jups + Mppoy + Mppoje + Mpeayr + Mpow + Mpojg + Mpoir + Mprow + Mprajg + Mpryr
+ Mprajut + Mps3juss + Mppousz + Mpiyny + Mpie + Mpyr + Mpy + Mg + My + Mg
+ My r + Mgt + Mpjy1 + My ju1 + Mgur + Mprayurs + Mprajurs + Mpuyusa + Mpjusz + My us2
+ Msupr + Mpjwz + Mywa + Mg + Mpurs + Mwur2 + Mgjur: + Mpusjyus + M pgojups
+ Mpoyups + Mprajups + Mppajuss + Mprjups + Mpajuss + Mpeajus + Mpups + Mwjups + Msjups
+ Mpraus + Mpaurs + Mprajurs + Mpiuss + Mpuss + Mwuss + Msjuss + Mpus + My s
+ Mgz + Mpurs + Myurs + Msjurs + Mpiyous + Mejous + My juus + Mgjous),
Oy = —a(Mppyy + Mppay + Mpay + Mpraw + Mpusiv + Mpgoy + M poy + Mprajy
+Mpiy +Mpy + Mpy),
Op = —o(M pp3je + M pg3je + Mpaje + Mpraje + Mpusie + Mpsae + M poe + Mproe
+ Mpijg + Mpjg + M),
Or = —o(M pp3jr + M pg3jr + Mp3jr + Mprsjr + Mpusir + Mpgoyr + M pojr + Mpror
+ Mpyr + Myr + Mgr),
Ou1 = —a(Mpp3ju1 + Mpraju1 + Mpuzur + Mprajur + Mpur + My + Msjun),
Oug> = —a(M pp3jus2 + M p3jus2 + M pusjusz + M pgojus> + M prjus2 + Mpjusa + Mwjusa + Msjus:),
Ouvz = —o(M pp3jua + Mprjvz + Mpusjwz + Mpjuz + My vz + Msjuz),
Oura = —o(M p3jur2 + M pr3jur2 + Mpusjurz + Mpraur: + Mpjura + Myjur: + Msjura),
Oups = —o(M pp3jups + M peajups + M pajups + Mprajups + M pijups + Msjups + Mwjups + Msjups),
Oups = —o(M pg3juss + M peajuss + M pojuss + Mpijuss + Mgjuss + My uss + Mgjuss),
Ous = —a(Mpgajuz + Mprajus + Mpjuz + Myjuz + Mgus),
Ours = —o(Mpr3urs + M pojurs + Mprajurs + Mpurs + My jurs + Mgurs),
Ouus = —a(Mpusjuus + Mpijuus + Mguus + Mwous + Mspus). (C1)

Appendix D. Explicit form of the functions Cjx; and K|y,

In this section we show the functions Ciy; and K[y that appear in the final expression (11) of the LU
decomposition:

_gp D= (Mijktm k1)
Cpss = LDDS UUBZ ’

_ gD D~ (Mijktm+1ijk) p D= (Mijkim+1ij1)
Cps = LDD3 UU2 + LDB3 U Ul ’
_gp D= (Mijkim+1ijkr) Py P Mijkim
Cprs = LDD3 UUTz + Lm UUI ’
_ gD P~ (Mijkim+13jk) Y4 P~ Nijkim P D~ (ijkim —ijk)
Cpus = LDBS UUT2 + LD3 U U2 + LDT3 U UB2 ’

_gp D= (Mijkim k1) P D= (Mijkim+1ij1)
Cop = LDD3 UUB3 + LDB3 % UD3)

P P—(Mijkim+nijkr) PP Mijkim P p—(nijrr+nix)
Cpy = LDD3 UU3 + Lm UUD3 + LDBZ UUl ’
_gp D= (Mijkim+1ijkr) P D= (ijkim =ik p PNk
Cpr = LDD3 UUT3 + LDT3 UUD3 + an UUI)
gD P—(Mijkim+nijk) p g P Mijkim P p—(nijrr+nik) p 7PNkl
Cpr = Lpg3Uvys + LUy + Lppa Uy + LUy

_gp Pp—(nijgr—nijk) p PNk P P~ (Mijkim—"ijk) p P Mijkinm
CUl - DTZUUZ +LD2UUT2 +LDT3UU3 +LD3UUT3 ?

M. Ujevic, P.S. Letelier | Journal of Computational Physics 215 (2006) 485-505

P—Nijk ”l/ltlm*”uld nz/kl»n+n1/k)
Cupa = L Upy"™ + LUy + L5 Uy ,

P Pk —(Myjkim—"ijkt) Py P Mijkim
Cuva = L Uiy + Loy Uty +LpsUpys

nuk/m*nz/kl) (Mijkim—nijk)
Cur = DU3 UUT3 3UUU3 ’

—(nijri—nijk) P— m/kl (mijra+nie)
Cups = Ly, Uty Utz ™+ Lip Ugrs ;

—Njjk nr/k1+n!/k)
Cups = L U™ + LD Ut)
_ P—Njjk Nijkl
Cus = Dl UUT% + L UUU3)
P ikl —Nijic)
Curs = LDTZUUUSU “
Cop3 =Cp=Cyp =Cs=Cy=Cp=Cr=Cypyz =0,

P~ (Rijkim+1ijk1) D~ (Mijkim k1) D~ (Mijktm+nijkr) —(Mijkim+nijkr) —(Mijkim+1ijkr)
U + U + U + U + U
N E T

Kpps = UD3 3

Koz = Up*(”i/k1m+”i/‘k) + UP*("i/k1m+nijk) + UP*(ﬂi/kler",,k + U” ”z/k1m+"z;k + U —(Mijkim+nijk) + U* —(Mijkim+nijic)
- N E T UB2 UB3

_ P—Nijkim P~ Nijkim P Nijkim P—Njjkim P~ Nijkim
Kp; = UN + UE + UT + UUB2 + UUTZ)
gy =i —ngr) P~ (Mijkim—"ijk) P~ (Mijkim—"ijk) P—(Rijkim—nijk) P~ (Mijkim—"ijk)
Kprs = Uy + U + Uz + Uy + Uy,
P—(Mijkim—nijk) p—(Mijkim—nijk)
+ U + U
ur2 UT3 ’
(s —ni (e i (i —ni (s —ni (e —ni
KDU3 — va (ijkim ukl) + Up (ijkim 1/&1) 4 UP (ijkim ljkl) 4 UZ](ijkim ukl) + U[Z]B; ijkim t/kl)
+ UP*(”ijklm*”f/kl) + U nz/kzm*"ukz + Up "uuﬂz*ﬂykl)
p—(nijki+niji) P— ”:/lir”:/k) P—(nijga+nije) Vh/kl+ﬂ:/k P~ (nijgr+nijr) p—(nijrr+nik)
Kpsm = U% + UL +Ub + U, + UL + Uy
p—(mijrr+nix)
+ U
U3 ’
_ P—Nijkl P—Nijki P—Nijkl Njjkl Nijkl Nijil
Kpr = UN + UE + UT + Uw)s + UUB% + UUT3)
=i —ny) D~ ik —nijk) P~ (Mijkr—niji) D~ ik —nijk) (mijer—nijk) ”Ukl—"x/k)
Kpra = UN + U + UT + UUI + UUT2 + U
D= (nijki—nijk) n,,/d nijie)
+ U + U
U3)
oy Mk P—1ijk P nrjk ik jji s i
Kp =Uy + Uy + U7y JrUUBz +UUD3 +UUB3 +UUU3,

Kp=Uy" + U + Uy + Ul + UL + ULy + Uy + Ulgy’ + U + Uy + Ul

nj nj nj nj

Ky = Uy + U + U, ”J+U$B§’+U” nj"'Uf/Tz + Ulps + Uli + Ul ”’+U’Zm + Uty

—1 —1 —1
Ks=Uy' + US + Ul + Uy + Uty + Ul + Ul + Ul + Ul + Ul + Ul
(n +n —(Mijkim=+iji n —(Mijkim—niji
KN — LDD3 Up ijkim ukl + LDB3 Uﬁ[ijkIm uk + L Up ijklm +LDT'; U?V jjklm z/k)
P~ (Mijkim—"ijk1) p—(nijkr+nijr) P—Nijkl D= ik —nijk) p 7P Mijk
+ LDU3 U + LDB2 UN + L U + LDTZ UN + LDl UN
P—Nij P P ”/
+ LU + LUy,
(Rijktm+n; (Rijktm+n; Nijkim (ijktm—n;
Ky = LDD3 UP kil ki) + LDB% UP kil k) + L UP iy LDT3 UP ki k)
P— "U/clm—"uu P~ nijkl+nijk)4 P—Nijkl P—(’li/kz—”ijk) V4 P—Nijk
+ LDU3 U + LDBZ UE + LDZ UE + LDT2 UE + LDI UE
P1ij P pfl
+ LRULY + L U%
D= (Mijkim+nijkr) D= (Mijkim+1ij1) D~ Nijkim D= (Mijkim—"nijk)
KT - LDD3 U + LDB3 U + L U + LDT3 UT
P— ”sz/m_nz/'k/) P~ (nijkr+nijk) P—Nijkl P~ (ks —niji) p oy Nijk
+ LDU3 UT DBZU + L U + LDT2 UT + LDI UT
P—nj prp—1
+ L5, UMY + LU
+ _ - _
KU] — LDD3U ”A/klm nukl +L T3Up ”uklm ”uk +L U}U nl/l«[m nz/l«[) T2U ”1//«[”1/1()
+ US4 L8, UR Y - LBUR
Ul »

503

504 M. Ujevic, P.S. Letelier | Journal of Computational Physics 215 (2006) 485-505

Ky = DB3 UUB;WMM% + L UUB;UHM U3 UUanwm) + L DB2 UUBZHUMJrHUk + L UUB;Uk

+ LUty + Ly Ul + LsUl,
Kys = DB3 U = (Mijim+1ijic) + L P U —(mijim 7nuA) U3 U —(mijim—"ijir) Up my L, Up Y oygp UU2 7
Kur, = LD3 UUT’;/HM 73 UUTznllum G + LDU3 U?/Tgn’/klm 7n”k]> + LDTz UUTZn”k]) + Ly Ul[]/TZ”

+ Ly Uy + L" Ul
KUD3 - LDD3 UUD;UUWJF””H + LDBZ UUD;UUJF”W) + L UUDr;”U + LDTZ UUD(;UH nl]k + L UUDn3Uk
+ Lp UIZ/D’;” + LP UUD3 + LP UUD%?
K UB3 — LDB3 UUBgn‘/kl”l+n’,k + LDBZ UUB(%HUUJrn”k + L%Z U[Z/B’;”U + L UUB);”k + Lp UUBZU + Lp UUB?
+ Lp UUBS’
Kys = LD,,Ul, i) DUl) LUt + 1, U 4 rhun
KUT3 - LDT3 UUT3nUU”I_nU/ + L UUT’;UM + LDTZ UUT;I”M nl/k + Lp UUT’;” + Lp Ull)/T';/ + Lp UUT3>
KUU3 - LDU3 UUU;’WW”W) + L UUU’? + L UUUnll., + L}IZV Uf/;/ns/ + L UUU%’ (Dl)

References

D. Lynden-Bell, P.P. Eggleton, On the consequences of the gravothermal catastrophe, MNRAS 191 (1980) 483-498.

M. Hénon, Monte Carlo models of star clusters, Astrophys. Space Sci. 13 (1971) 284-299.

M. Hénon, The Monte Carlo method, Astrophys. Space Sci. 14 (1971) 151-167.

C.Z. Cheng, G. Knorr, Integration of Vlasov equation in configuration space, J. Comput. Phys. 22 (1976) 330-351.

R.R.J. Gagne, M.M. Shoucri, Splitting scheme for numerical-solution of a one-dimensional Vlasov equation, J. Comput. Phys. 24

(1977) 445-449.

[14] M. Shoucri, H. Gerhauser, K.-H. Finken, Study of the generation of a charge separation and electric field at a plasma edge using
Eulerian Vlasov codes in cylindrical geometry, Comput. Phys. Comm. 164 (2004) 138-149.

[15] H.L. Stone, Iterative solution of implicit approximations of multidimensional partial differential equation, SIAM J. Numer. Anal. 5
(1968) 530-558.

[16] G.E. Scheneider, M. Zedan, A modified strongly implicit procedure for the numerical solution of field problems, Numer. Heat Trans.
4 (1981) 1-19.

[17] H.-J. Leister, M. Peri¢, Vectorized strongly implicit solving procedure for a seven-diagonal coefficient matrix, Int. J. Numer. Methods

Heat Fluid Flow 4 (1994) 159-172.

[18] C.A.J. Fletcher, Computational Techniques for Fluid Dynamics 1, Springer-Verlag, Berlin, 1991.

[19] M. Miyamoto, R. Nagai, 3-Dimensional models for distribution of mass in galaxies, PASJ 27 (1975) 533-543.

[20] M.N. Rosenbluth, W.M. MacDonald, D.L. Judd, Fokker—Planck equation for an inverse-square force, Phys. Rev. 107 (1957) 1-6.
[21] C. Einsel, R. Spurzem, Dynamical evolution of rotating stellar systems — I. Pre-collapse, equal-mass system, MNRAS 302 (1999) 81—

95.

[22] R.K. Galloway, A.L. MacKinnon, E.P. Kontar, P. Helander, Fast electron slowing-down and diffusion in a high temperature coronal
X-ray source, A&A 438 (2005) 1107-1114.

[23] K. Nanbu, Probability theory of electron-molecule, ion-molecule, molecule-molecule, and Coulomb collisions for particle modeling
of materials processing plasmas and gases, IEEE Trans. Plasma Sci. (2000) 971-990.

[24] L.S. Brown, D.L. Preston, R.L. Singleton, Charged particle motion in a highly ionized plasma, Phys. Rep. 410 (2005) 237-333.

[25] M. Ujevic, P.S. Letelier, Numerical self-consistent stellar models of thin disks, A&A 442 (2005) 785-793.

[26] Y. Saad, M.H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, J. Comput.
Phys. 7 (1986) 856-869.

[27] C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential and integral operators, J. Res. Nat.
Bur. Stand. 45 (1950) 255-282.

M. Ujevic, P.S. Letelier | Journal of Computational Physics 215 (2006) 485-505 505

[28] W. Arnoldi, The principle of minimized iterations in the solution of the matrix eigenvalue problem, Quart. Appl. Math. 9 (1951) 17—
29.

[29] C. Lanczos, Solution of systems of linear equations by minimized iteration, J. Res. Bur. Stand. 49 (1952) 33-53.

[30] V. Frayss, L. Giraud, S. Gratton, J. Langou, A set of GMRES routines for real and complex arithmetics on high performance
computers, CERFACS Technical Report TR/PA/03/3, public domain software available on <http://www.cerfacs.fr/algor/Softs>,
2003.

[31] See for example: G.E. Forsythe, W.R. Wasow, Finite Difference Methods for Partial Differential Equations, John Wiley, 1960.

http://www.cerfacs.fr/algor/Softs

	Solving procedure for a 25-diagonal coefficient matrix: Direct numerical solutions of the three-dimensional linear Fokker-Planck equation
	Introduction
	The general problem
	Description of the algorithm
	Test results and comparisons with other methods
	Physical example
	Numerical comparison

	Domains with curved boundaries
	Concluding remarks
	Elements of M=LU at node p
	Explicit form of Eq. (9)
	O as a linear combination of M
	Explicit form of the functions C[X] and K[X]
	References

