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Universidade Estadual de Campinas, Barão Geraldo, 13081-970, Campinas, SP, Brazil

Received 11 May 2005; received in revised form 3 November 2005; accepted 4 November 2005
Available online 19 December 2005
Abstract

We describe an implicit procedure for solving linear equation systems resulting from the discretization of the three-
dimensional (seven variables) linear Fokker–Planck equation. The discretization of the Fokker–Planck equation is per-
formed using a 25-point molecule that leads to a coefficient matrix with equal number of diagonals. The method is an
extension of Stone�s implicit procedure, includes a vast class of collision terms and can be applied to stationary or non
stationary problems with different discretizations in time. Test calculations and comparisons with other methods are pre-
sented in two stationary examples, including an astrophysical application for the Miyamoto–Nagai disk potential for a
typical galaxy.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In dealing with solutions of partial differential equations we often encounter a set of linear equations that
has to be solved. This set of linear equations depends on the method used for discretization. In general, when
dealing with three-dimensional systems the number of linear equations increases and the numerical solution of
these equations uses most of the computing time. An extreme case is the Fokker–Planck equation. The
Fokker–Planck equation is also known as the Fokker–Planck approximation because truncates the BBGKY
(N.N. Bogoliubov, M. Born, H.S. Green, J.G. Kirkwood, and J. Yvon) hierarchy of kinetic equations at its
lowest order by assuming that correlation between particles only plays a role as a sequence of uncorrelated
two-body encounters [1,2]. Note that the only ‘‘approximation’’ made in the Fokker–Planck equation comes
from the model adopted for collisions and, in fact, the Fokker–Planck equation can be derived from first
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principles and no ad hoc suppositions are needed. The solution of the Fokker–Planck equation is not an easy
task because in the three dimensional case it has seven variables: three space coordinates (x), three velocity
coordinates (v) and time (t). In the two-dimensional case there is a simplification because the total number
of variables are five. In either case, the large number of grid nodes needed for the computation of the solution
becomes a storage data problem. In a three-dimensional problem, for a stationary or non-stationary equation,
the number of linear equations corresponds to the number of nodes in the phase-space grid (x, v). If we divide
each of the phase-space variables� interval of the distribution function in nine parts (10 nodes), we will have a
grid with 106 nodes. In a simple numerical method we have to store and solve a matrix with 1012 elements. For
the two-dimensional case, the main matrix will have 108 elements. With 10 grid nodes per variable only very
simple geometries can be described. The large number of matrix elements brings us another computational
problem, the slowness of the codes. In the discretization process of the Fokker–Planck equation, a system
of linear equations is obtained and arranged into a matrix form (coefficient matrix). For the case of a finite
difference scheme discretization in three dimensions with a 25-point molecule, we see that approximately less
than 0.003% of the elements are different from zero. This incentives us to search for alternative and faster
methods, usually iterative, to solved the linear system using only the non-null data. Note that, in general,
the coefficient matrix is not symmetric. So, powerful methods like the Conjugate Gradient [3,4] and Cholesky
[4] decomposition can not be used. Our main goal is to obtain a code that allows us to obtain a fast and effec-
tive numerical solutions on high resolution schemes of the three-dimensional linear Fokker–Planck equation
in a direct way. The importance and difficulties of having three-dimensional solutions of the Fokker–Planck
equation can be summarized in the words of Binney and Tremaine [5, p. 245], here in relation with galactic
dynamics: Finding the particular function of three variables that describes any given galaxy is no simple matter.

In fact, this task has proved so daunting that only in the last few years, three-quarters of a century after Jeans�s
[6] paper posed the problem, has the serious quest for the distribution function of even our own Galaxy got

underway.

We mean by direct numerical calculations of the Fokker–Planck equation a method that is neither statis-
tical nor mean field approximation [5]. Numerical solutions can be performed using statistical approximate
methods like the method of moment equations [7–9] and Monte Carlo methods [10,11]. Also, solutions have
been found using the orbit-averaged Fokker–Planck equation with action-angle variables [5], this last method
reduces the equation involving six phase-space coordinates plus time to one involving only three actions plus
time. Another method that have been used for solving the Vlasov equation with good results is the operator
splitting technique [12,13]. Two-dimensional numerical integration of the Vlasov equations can be found in
[14]. The problem associated with this method is that, even in the two-dimensional case, the time spent in mak-
ing the interpolation is very expensive. Direct three-dimensional numerical calculations of the Fokker–Planck
equations, to the best of our knowledge, has not been done. As we said before, the main difficulty to find the
solution of the three-dimensional Fokker–Planck equation is the large number of linear equations that is
translated in a high computational cost involve in the process. In this article we present a variations of Stone�s
[15] method that leads us to solve with low computational cost the three dimensional linear Fokker–Planck
equation. Variations of Stone�s method has been applied to other situations in two [16] and three [17] space
dimensions when dealing with fluid flow, heat transfer and Laplace equation.

In this article we study how to solve the system of equations that arises from the discretization process using
a finite difference scheme, in particular we used a 25-point molecule, but we have to keep in mind that other
discretization procedures gives practically the same form for the coefficient matrix and this method can also be
applied, i.e. sparse matrices with the same number of diagonals. For example, in two dimensions, the diffusion
equation can be discretized in an uniform rectangular grid by using the finite difference scheme, the finite vol-
ume method (which is a discretization of the equation in integral form) or the finite element method, see [18].
All of these methods gives five diagonals, in the finite element method the number of diagonals depends on the
type of interpolation considered, and the coefficient matrix can be solved by the same numerical method. So,
in this article, we shall not discuss what discretization method is better for the problem considered, we rather
present a numerical method that allows us to find the solution of a coefficient matrix with 25 diagonals that
can be obtained with different discretization methods.

The article is organized as follows. In Section 2 we present the linear Fokker–Planck equation to be solved.
We consider a linear collision term that includes a vast class of collisions. In Section 3, we describe the algo-
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rithm of the modified Stone method to obtain the incomplete LU decomposition. The discretization of the
Fokker–Planck equation is performed using a central difference approximation for the phase-space variables
(x, v) that is described with a 25-point molecule. This point molecule also allows to describe different discret-
izations in time, as the implicit Euler or Crank–Nicolson discretization. The derivation of the LU decompo-
sition is made without assuming any particular discretization in time, maintaining its derivation as general as
possible. The notation used for the diagonals in the coefficient matrix is also shown. In Section 4, we test our
algorithm with an astrophysical example by solving the Fokker–Planck equation for the widely used Miyam-
oto–Nagai disk potential [19] in three dimensions. The parameters of the model are chosen to represent the
Newtonian potential of a typical galaxy. Also, we used a Fokker–Planck test equation to compare our algo-
rithm with the Generalized Minimal Residual Method (GMRES) that solves large sparse matrices. In Section
5, we show how to modified the code to implement curved boundary conditions. Finally, in Section 6, we sum-
marized our results.

2. The general problem

The linear Fokker–Planck equation can be written as
of
ot
þ v � rf þ _v � rvf ¼ C½f �; ð1Þ
where v represent the velocity of the particles, $ is the usual gradient, $v is the velocity gradient (derivations
are done with respect to the velocities), _v is the acceleration and the symbol C[f] denotes the rate of change of f

due to encounters (collision term). We consider as the collision term the expression
C½f � ¼ Aðx; vÞr2f þ Bðx; vÞr2
vf þ Cðx; vÞrf þ Dðx; vÞrvf þ

X3

i6¼j¼1

Eijðx; vÞ
o

2f
oviovj

; ð2Þ
where A, B, C, D and Eij are arbitrary functions of the phase-space variables x and v. The equation above
describes a vast family of collisions. In particular, with the mixed velocity derivative term present in (2) we
can take into account the important collision term found by Rosenbluth et al. [20] used in gravitating systems
and plasma physics, see for example [21–24] and reference therein. If we need mixed space derivatives instead
of mixed velocity derivatives, we can use the same code presented in this article to solve the problem. If a par-
ticular problem requires the inclusion of mixed velocity derivatives as well as mixed space derivatives, it is pos-
sible to develop a similar numerical procedure following the steps of this article, but it complicates the
incomplete LU decomposition used for the method, i.e. we need 12 extra diagonals on the coefficient matrix
(37 instead of 25 diagonals).

In Section 4 we solve numerically the stationary linear Fokker–Planck equation (1). In general, Eq. (1)
is non-linear because _v ¼ Fðf Þ=m, where F is the force and m is the mass of the particle. Another kind of
non-linearity may arise from the collision term considered. A way to deal with this kind of problem is to
start with a given distribution function at time t from which we can calculate the force and collision term
at this time. Then, this force and collision term are replaced into the Fokker–Planck equation from which
we obtain the distribution function for a later time t + Dt. With the recently calculated distribution func-
tion we can calculate again the force and collision term at time t + Dt and the process is repeated. An
application for a stationary non-linear problem can be found in [25], in which we found the distribution
function that satisfies both Fokker–Planck and Poisson equation in two dimensions for a Kuzmin-Toomre
thin disk.

3. Description of the algorithm

The system of equations obtained from the discretization of the Fokker–Planck equations (1) and (2) using
the central finite difference approximation for the phase-space and a temporal discretization in time (implicit
Euler, Crank–Nicolson, etc.) can be cast (for each time step) into the simple form,
AW ¼ Q; ð3Þ
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in which A is a square coefficient matrix Nnode · Nnode (Nnode the number of nodes in the discretization grid),
W is the vector matrix of the nodal variable values, and Q is the source vector. The position of the grid nodes
in the phase-space (x, y, z, vx, ,vy, vz) is performed by six indexes (i, j, k, l, m, n), where i represents the index
for the variable x, j represents the index for the variable y, etc. The ordering of nodes in this six-dimensional
space is made as follows. The surface n = constant are stacked one above another. Within the fifth dimen-
sional space (for each n) the hyper-surfaces m = constant are stacked one above another. Within the
fourth-dimensional space (for each n and m) the hyper-surfaces l = constant are stacked one above another.
Within the three-dimensional space (for each n, m and l) the surfaces k = constant are stacked one above an-
other. Within the two dimensional space (for each n, m, l and k) the index j increases first (y-direction) than the
index i (x-direction). The one-dimensional storage index p of the vector matrix W is calculated from the six-
dimensional grid indexes (i, j, k, l, m, n), i.e.
Table
Nome
discret

Matrix

Basic d

W(i, j,
W(i, j +
W(i, j �
W(i +
W(i �
W(i, j,
W(i, j,
W(i, j,
W(i, j,
W(i, j,
W(i, j,
W(i, j,
W(i, j,

Mixed

W(i, j,
W(i, j,
W(i, j,
W(i, j,
W(i, j,
W(i, j,
W(i, j,
W(i, j,
W(i, j,
W(i, j,
W(i, j,
W(i, j,
p ¼ ðn� 1Þnijklm þ ðm� 1Þnijkl þ ðl� 1Þnijk þ ðk � 1Þnij þ ði� 1Þnj þ j; ð4Þ

with
i ¼ 1 � � � ni; j ¼ 1 � � � nj; k ¼ 1 � � � nk; l ¼ 1 � � � nl; m ¼ 1 � � � nm; n ¼ 1 � � � nn;

nijklm ¼ ninjnknlnm; nijkl ¼ ninjnknl; nijk ¼ ninjnk; nij ¼ ninj;
ð5Þ
where ni, nj, nk, nl, nm, nn denote the number of grid points for each variable. Therefore Nnode = ninjnknlnmnn.
With the help of the storage index p we can switch each point of the 25-point molecule from the matrix form to
the one dimensional position representation. This is done in Table 1 by making the equivalence f(x, y, z, vx,
vy, vz) ” W(i, j, k, l, m, n). Until now, we considered only the non-stationary case, but the discretization in
Table 1 can be used in the non-stationary as well as the stationary Fokker–Planck equation. In both cases,
the final system of equations is of the form (3), with A being a sparse matrix with elements different from zero
1
nclature and relations between the matrix form and the one-dimensional storage index at node p of the 25 terms used in the
ization of the Fokker–Planck equation

form Abbreviation Name Position from node p

iagonals

k, l, m, n) P Point p

1, k, l, m, n) N North p + 1
1, k, l, m, n) S South p � 1

1, j, k, l, m, n) E East p + nj

1, j, k, l, m, n) W West p � nj

k + 1, l, m, n) T Top p + nij

k � 1, l, m, n) B Bottom p � nij

k, l + 1, m, n) U1 Up1 p + nijk

k, l � 1, m, n) D1 Down1 p � nijk

k, l, m + 1, n) U2 Up2 p + nijkl

k, l, m � 1, n) D2 Down2 p � nijkl

k, l, m, n + 1) U3 Up3 p + nijklm

k, l, m, n � 1) D3 Down3 p � nijklm

diagonals

k, l + 1, m + 1, n) UT2 Uptop2 p + (nijkl + nijk)
k, l � 1, m + 1, n) UB2 Upbottom2 p + (nijkl � nijk)
k, l + 1, m � 1, n) DT2 Downtop2 p � (nijkl � nijk)
k, l � 1, m � 1, n) DB2 Downbottom2 p � (nijkl + nijk)
k, l + 1, m, n + 1) UT3 Uptop3 p + (nijklm + nijk)
k, l � 1, m, n + 1) UB3 Upbottom3 p + (nijklm � nijk)
k, l + 1, m, n � 1) DT3 Downtop3 p � (nijklm � nijk)
k, l � 1, m, n � 1) DB3 Downbottom3 p � (nijklm + nijk)
k, l, m + 1, n + 1) UU3 Upup3 p + (nijklm + nijkl)
k, l, m � 1, n + 1) UD3 Updown3 p + (nijklm � nijkl)
k, l, m + 1, n � 1) DU3 Downup3 p � (nijklm � nijkl)
k, l, m � 1, n � 1) DD3 Downdown3 p � (nijklm + nijkl)
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in only 25 diagonals, see Fig. 1. Now, we want to develop an iteration method in order to solve the system of
Eq. (3). After h iterations of such method, the approximate solution Wh do not satisfies (3) exactly, their is a
non-zero residual R such as
Fig. 1.
betwee
their n
AWh ¼ Q� Rh. ð6Þ

The purpose of the iteration procedure is to drive the residual term to zero after some number of iteration
(actually we stop the iteration when the residual term attained some imposed small value condition). Let us
consider an iterative scheme for a linear system in the form
MWhþ1 ¼ OWh þ B; ð7Þ

when convergence is achieved we must have that A = M � O and B = Q. An alternative version of this pro-
cedure can be obtained by subtracting MWh from both sides of (7) to have
MDhþ1 ¼ Rh; ð8Þ

where Dh+1 = Wh+1 � Wh and Rh = B � (M � O)Wh = Q � AWh. Any effective iterative method to solve (7)
must be cheap and converge rapidly. For faster convergence, the matrix M have to be a good approximation
of the coefficient matrix A, i.e. we must have OWh small. The original idea of Stone is to use for the iteration
matrix M an incomplete LU decomposition of the matrix A. The reason for this choice is that LU decompo-
sition is an excellent linear system solver. The matrices L and U have elements different from zero only in the
diagonals in which A have also elements different from zero. The product of the matrices, L and U, provide a
nj

nij

nijk

nijkl

nijklm

nijk nijk nijk nijk

nijkl nijkl

N

T

U1

UB2

U2

UT2

UD3

UB3

U3

UT3
UU3

S

W

P

E

B

D1

DT2

D2

DB2

DU3

DT3

D3

DB3

DD3

1

Form of the coefficient matrix A obtained from the discretization of the partial difference equation of our problem. The separation
n the main diagonal P and the other diagonals are indicated. Also, the distance between the diagonals of the mixed derivatives to
earest diagonals are shown. Note that the figure is not in scaled.
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Fig. 2. Schematic representation of the matrices L, U and their product M. The multiplication of the matrices L and U leads to extra
diagonals (dotted lines) not present in the coefficient matrix A. The diagonals of L, from the left-bottom corner to the main diagonal, are:
DD3, DB3, D3, DT3, DU3, DB2, D2, DT2, D1, W, S, P. The diagonals of U, from the main diagonal to the right-up diagonal, are: 1, N, E,
T, U1, UB2, U2, UT2, UD3, UB3, U3, UT3, UU3. The diagonals in M are products of these two sets of diagonals but we have to be careful
because more than one product can be at the same diagonal.
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matrix M with a larger number of diagonals with elements different from zero, see for instance Fig. 2. To make
the decomposition LU unique, we set the elements on the principal diagonal of U equal to 1. In doing the LU

multiplication, we have to pay extra attention because sometimes more than one diagonal product are at the
same distance from the main diagonal P, e.g. the product LD3 Æ U1 and LDD3 Æ UU2 are at the same diagonal in
M. The multiplication rules for matrices furnish the elements of M = LU at node p (see Appendix A), where
for example, MWjUU3 represents the diagonal in M that is obtain from the multiplication between the elements
of the diagonal S in L with the elements of the diagonal UU3 in U.

Now, we choose L and U in such a way that M( = A + O) is the best possible approximation to A. The
standard method for decomposition is to let O to have elements different from zero in the diagonals of M that
corresponds to the diagonals not present in A and to force the other diagonals of M to be equal to the cor-
responding diagonals in A. But this method converges slowly because the resulting matrix O is not small.
Stone recognized that the convergence of the method could be faster if we allow O to have elements different
from zero also in the diagonals present in A. The key idea is that the contribution of MW of the diagonals not
present in A partially canceled the contribution of OW of the diagonals present in A, in such a way that
OW � 0. ð9Þ

Note that in (A1) they are diagonals in M that present more than one term. In general, the principal diagonals
have more than one element, as for example MDT3, but beside these principal diagonals there are other no-
principal diagonals that have more than one element, like MD3jUB2. Now, relation (9) can be written for
one grid node in several ways. The usual way is to consider the elements of these no-principle diagonals as
part of the same diagonal. Other way is to consider these elements as they were from different diagonals, thus
in this case, following the above example, the no-principal diagonal MD3jUB2 is split into two diagonals
MD3jUB2 and MDB3jU2. We obtained the final relations for the LU decomposition in both ways and we found
that the LU decomposition considering the elements as they were from different diagonals is faster by a factor
of 2. Hereafter we consider this case. The explicit form of Eq. (9) is given in Appendix B.

The problem now is to defined the elements of O to satisfy Eq. (B1) without introducing additional
unknowns. If we expect the solution of the partial differential equation to be smooth, we can approximate
the values of WBjN, WNjW, etc, in terms of the values of W at nodes corresponding to the diagonals of A. Stone
proposed the following approximations (other approximations are possible),
WBjN � aðWB þWN �WP Þ;
WW jN � aðWW þWN �WP Þ; etc.,

ð10Þ
where a is a constant. Stability analysis made by Stone requires that a must be between 0 < a < 1. Replacing
the above approximations into (B1) we obtain the elements of O as a linear combination of the elements of M,
see for instance Appendix C. Now, using the relation M = A + O together with expressions (A1) and (C1), we
find that the elements of the matrices L and U are given by
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Lp
½X � ¼

Ap
½X � � C½X �

1þ aK ½X �
; ½X � ¼ DD3;DB3;D3;DT 3;DU3;DB2;D2;DT 2;D1;B;W ; S;

Lp
P ¼ Ap

P � Lp
SUp�1

N � Lp
W Up�nj

E � Lp
BU p�nij

T � Lp
D1U

p�nijk

U1 � Lp
DT 2U

p�ðnijkl�nijkÞ
UB2 � Lp

D2U
p�nijkl

U2

� Lp
DB2U

p�ðnijklþnijkÞ
UT 2 � Lp

DU3U
p�ðnijklm�nijklÞ
UD3 � Lp

DT 3U
p�ðnijklm�nijkÞ
UB3 � Lp

D3U
p�nijklm

U3

� Lp
DB3U

p�ðnijklmþnijkÞ
UT 3 � Lp

DD3U
p�ðnijklmþnijklÞ
UU3 þ aðKN þ KE þ KT þ KU1 þ KUB2 þ KU2 þ KUT 2

þ KUD3 þ KUB3 þ KU3 þ KUT 3 þ KUU3Þ;

U p
½X � ¼

Ap
½X � � aK ½X � � C½X �

Lp
P

; ½X � ¼ N ;E; T ;U1;UB2;U2;UT 2;UD3;UB3;U3;UT 3;UU3;

ð11Þ
where the explicit form of the functions C[X] and K[X] are given in Appendix D. The elements of the LU decom-
position have to be calculated in the order specified in (11). In doing this, we must take into account that a
certain element is considered equal to zero if its storage index is less or equal zero, e.g. if p = 3 and nj = 5 then
the elements with index p and p � 1 are different from zero, and the elements with index p � nj, p � nij, etc are
equal to zero. When mixed derivatives are not present we must set all the elements with index DD3, DB3, DT3,
DU3, DB2, DT2, UB2, UT2, UD3, UB3, UT3, UU3 equal to zero. Once obtained the LU decomposition, the
system of equation is solved combining M = LU with (8) to obtain
LUDhþ1 ¼ Rh; ð12Þ

and here we set
L� h ¼ Rh;

UDhþ1 ¼ � h;
ð13Þ
from which we obtain the solution of our problem by solving two triangular systems. In this iterative method,
the matrix elements of L and U are calculated only once before the first iteration. In other iterations, only the
residual R, and D are calculated using the two triangular system mentioned above, i.e.,
� p ¼ Rp � Lp
DD3�

p�ðnijklmþnijklÞ � Lp
DB3�

p�ðnijklmþnijkÞ � Lp
D3�

p�nijklm � Lp
DT 3�

p�ðnijklm�nijkÞ
�
� Lp

DU3�
p�ðnijklm�nijklÞ � Lp

DB2�
p�ðnijklþnijkÞ � Lp

D2�
p�nijkl � Lp

DT 2�
p�ðnijkl�nijkÞ � Lp

D1�
p�nijk

�Lp
B�

p�nij � Lp
W �

p�nj � Lp
S�

p�1
�
=Lp

P ;

Dp ¼ � p � Up
UU3D

pþðnijklmþnijklÞ � U p
UT 3D

pþðnijklmþnijkÞ � Up
U3D

pþnijklm � U p
UB3D

pþðnijklm�nijkÞ

� Up
UD3D

pþðnijklm�nijklÞ � U p
UT 2D

pþðnijklþnijkÞ � U p
U2D

pþnijkl � Up
UB2D

pþðnijkl�nijkÞ � U p
U1D

pþnijk

� Up
T Dpþnij � Up

EDpþnj � U p
NDpþ1;

ð14Þ
where
Rp ¼ Qp � Ap
PW

p � Ap
NWpþ1 � Ap

SW
p�1 � Ap

EWpþnj � Ap
W Wp�nj � Ap

T Wpþnij � Ap
BW

p�nij � Ap
U1W

pþnijk

� Ap
D1W

p�nijk � Ap
UB2W

pþðnijkl�nijkÞ � Ap
DT 2W

p�ðnijkl�nijkÞ � Ap
U2W

pþnijkl � Ap
D2W

p�nijkl � Ap
UT 2W

pþðnijklþnijkÞ

� Ap
DB2W

p�ðnijklþnijkÞ � Ap
UD3W

pþðnijklm�nijklÞ � Ap
DU3W

p�ðnijklm�nijklÞ � Ap
UB3W

pþðnijklm�nijkÞ � Ap
DT 3W

p�ðnijklm�nijkÞ

� Ap
U3W

pþnijklm � Ap
D3W

p�nijklm � Ap
UT 3W

pþðnijklmþnijkÞ � Ap
DB3W

p�ðnijklmþnijkÞ � Ap
UU3W

pþðnijklmþnijklÞ

� Ap
DD3W

p�ðnijklmþnijklÞ;
in which, for simplicity, we have omitted the iterative index h.
4. Test results and comparisons with other methods

As was mentioned in the Introduction, the huge number of nodes needed to solve the Fokker–Planck equa-
tion leads to large amount of data that has to be stored in a matrix, this fact reduces the possible codes for
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testing the results. Furthermore, in general, the Fokker–Planck equation (1) is not symmetric, and for that
reason other methods can not be used. In this case, the Generalized Minimal Residual method (GMRES)
[26] is the most appropriate choice. The GMRES method belongs to the class of Krylov based iterative meth-
ods [27–29] and was proposed in order to solve large, sparse and non-Hermitian linear systems. This section is
divided into two parts. In the first part, we apply the method presented in this article to a physical example. In
particular, we choose the astrophysical problem of finding the distribution function of the Miyamoto–Nagai
disk in three dimensions. In the second part, we used a simplified version of the physical example to make
numerical comparisons. We compare our method with the best available method in solving huge sparse matri-
ces, i.e. GMRES. We prefer to make the numerical comparisons with the simplified version of the physical
example because the large amount of parameters present in the physical example make the analysis cumber-
some. This analysis is important because we show some advantages and limitations of our method.
4.1. Physical example

To test of our code we begin with an important astrophysical application, i.e. solve the Fokker–Planck
equation to find the distribution function of the Miyamoto–Nagai disk [19] in three dimensions in a stationary
regime. The Fokker–Planck equation to be solved is [5]
v � rf þ _v � rvf ¼ �
X3

i¼1

o

ovi
½f ðx; vÞDðDviÞ� þ

1

2

X3

i;j¼1

o
2

ovi ovj
½f ðx; yÞDðDviDvjÞ�; ð15Þ
where _v ¼ �rU, U ¼ � GMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2þðaþ

ffiffiffiffiffiffiffiffiffi
z2þb2
p

Þ2
p , G is the gravitational constant, M is the total mass of the system, a

and b are parameters that depending on the choice the potential can represent anything from an infinitesimal
thin disk to a spherical system, and the functions D(Dvi) and D(DviDvj) are known as the diffusion coefficients.
These diffusion coefficients were calculated by Rosenbluth et al. [20] considering a test star of mass m moving
through an infinite homogeneous sea of field stars of mass ma who has mean velocity equal to zero. Moreover,
the interaction between the particles are ruled by an inverse square force, and also, each stellar encounter in-
volve only a single pair of stars and are independent of all others. These diffusion coefficients are simplified if
the field stars distribution function is a Maxwellian distribution. The explicit form of these coefficients are [5]
DðDviÞ ¼
vi

v
DðDvkÞ; ð16Þ

DðDviDvjÞ ¼
vivj

v2
D Dv2

k

� �
� 1

2
D Dv2

?
� �� �

þ 1

2
dijD Dv2

?
� �

; ð17Þ
where D(Dvi), DðDv2
kÞ and Dv2

? are given by
DðDvkÞ ¼ �
4pG2qðmþ maÞ ln KGðX Þ

r2
; ð18Þ

DðDv2
kÞ ¼

4
ffiffiffi
2
p

pG2qma ln K
r

GðX Þ
X

; ð19Þ

DðDv2
?Þ ¼

4
ffiffiffi
2
p

pG2qma ln K
r

erfðX Þ � GðX Þ
X

� �
; ð20Þ
where q and r are the density and velocity dispersion of the field stars respectively, X � v=ð
ffiffiffi
2
p

rÞ, erf(X) is the

error function, GðX Þ ¼ 1
2X 2 erfðX Þ � 2Xffiffi

p
p e�X 2

h i
, K ¼ bmaxv2

typ

GðmþmaÞ, bmax is the maximum possible impact parameter

(usually set of order the radius of the system), and vtyp is a typical velocity of stars in the system. We shall
find the solution of Eq. (15) in a six-dimensional �box� using 10 grid nodes for variable that leads to a problem
involving 106 unknowns. If we want to solve this set of equations using a conventional solver we need to stor-
age 1012 elements in the coefficient matrix. We considered that the ranges of the velocities vx, vy, and vz are
between [�350 km s�1, 350 km s�1], the ranges of the coordinates x and y are between [�40 kpc, 40 kpc],
and the coordinate z between [�1 kpc, 1 kpc]. At the borders of the �box� we used a Dirichlet boundary con-
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Fig. 3. Numerical solutions of the distribution function of Eq. (15). Top: surface distribution for the case with vx � �117 km s�1,
vy � 39 km s�1, vz � �272 km s�1 and z � 0.55 kpc. Bottom: velocity distribution for the case with x � �22.23 kpc, y � 13.32 kpc,
z � �0.11 kpc and vx � 117 km s�1.
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dition of the form f ¼ exp½�ðx2 þ y2 þ z2Þ=2r2
s � exp½�ðv2

x þ v2
y þ v2

z Þ=2r2
v �. We set the parameters a = 4 kpc,

b = 1 kpc, ma = m = Mx, rs = 10 kpc, rv = 100 km s�1, vtyp = 200 km s�1, bmax = 40 kpc and the total mass
M = 1012Mx. The values set for the parameters correspond to typical galaxy data like the Milky Way. Also,
as a first approximation we spread the total mass uniformly along the disk and set the density q = constant. In
Fig. 3, we present two graphs of the distribution function that represent the numerical solution of (15). One is
the surface distribution function on the plane x � y and the other is the velocity distribution function on the
plane vy � vz; they are plotted at different points of the grid. We note that these figures have Maxwellian form
as it should.

4.2. Numerical comparison

In the next example we shall compare our code based in the LU decomposition (11) with the GMRES
algorithm. The problem of this method is that the storage of the orthonormal basis may become prohibitive
for some matrices, this storage depends on the value of the restarting parameter. The restarting parameter
of the GMRES algorithm determine the number of the orthonormal vectors for the Krylov subspace that
the code stores in order to calculate the updated solution and residual at each time step. At each time step
the code stores one vector. After a number of steps equal to the restarting parameter, the code construct the
most recent update and use it as a first guess to restart the next set of iterations. The convergence of the
method is guaranteed for large numbers of the restarting parameter, but this means that more vectors have
to be stored and computer memory problems may appear. We can use lower values of the restarting param-
eter but this increases the time spent in finding the solution. In particular, we used the gmres routine of
Matlab because it can handle sparse matrices. We also used a public GMRES software [30], this software
allows us to choose between different kinds of preconditioners and orthogonalization procedures but its
drawback is that can not handle sparse matrices. We choose as a test equation a stationary Fokker–Planck
equation similar to the physical example of the previous section. Note that in the non-stationary Fokker–
Planck equation we can perform a Crank–Nicolson discretization in time, which is also an implicit proce-
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dure, and the method presented in this article can be applied. The stationary Fokker–Planck equation con-
sidered for the test is
Fig. 4.
increas
of the
v � rf þ _v � rvf ¼ �rvf þ
1

2

X3

i6¼j¼1

o2f
ovi ovj

þ b
X3

i¼1

o2f
ov2

i
; ð21Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq

where _v ¼ �rU, U ¼ 1= x2 þ y2 þ z2 þ 12, and b is a constant. The form of Eq. (21) is similar to the equation
found when Rosenbluth potentials [20] are used in a gravitational potential U. Note that the collision term has
mixed velocity derivatives and that the resulting coefficient matrix from the discretization is non-symmetric.
We used central difference and a 25-point molecule to perform the discretization of Eq. (21), see also Table
1. Here, we find the solution of the above equation in a six-dimensional �box� of length 1.22 units. At the bor-
ders we used a Dirichlet boundary condition of the form f ¼ expð�x2 � y2 � z2Þ expð�v2

x � v2
y � v2

z Þ.
We first started with coarse grid of four points per variable that leads to a matrix of 40962 elements (in this

number we are not considering the border grid points given by the boundary condition) and b = 1. We found
for this case that our method spent approximately 0.2 seconds to find the solution (all the calculations were
perform with a Pentium IV of 1.8 GHz, the Fortran code was compiled with the Linux free compiler). We stop
the iteration when

Pn
i¼1ðD

tþ1
i Þ < 10�10. The gmres routine and the public GMRES code [30] spent approxi-

mately 0.35 and 3 seconds respectively to solve the system of equations with the same stop criteria, but it could
be more if we choose wrong the restarting parameter. Here we are considering only the time spent to solve the
coefficient matrix and not the time due to create the coefficient matrix and upload it into the code. In our code,
we only upload 25 vectors of approximately Nnode.

For a grid of five points per variable some code compilers can not allow the storage of the coefficient matrix
because is too large 512, approximately 244 millions of elements. This was the case of the public code because it
can not managed sparse matrices. For this number of grid points the modified Stone method was almost 7
times faster than the gmres routine. In Fig. 4 we present the efficiency of our method compare to the gmres
routine. Note that when we increase the number of grid points the efficiency also increases. For a grid of nine
points per variable the gmres routine can not managed to find the solution in one iteration because we have
computer storage problems. To handle this, we lower the restarting parameter to the maximum possible value
that avoids this problem. For a grid of 10 point per variable the number of elements in the coefficient matrix
increases to 1012. Our code can managed this huge amount of data in a faster and efficient way. The time spent
for this case was approximately 85 seconds. This should be the time spent for each time step in a non-station-
ary problem, which is a great result considering the number of nodes in the grid and the precision attained
with the stop criteria. The variation of a between the accepted limits 0 < a < 1 slightly alter the time spent
in finding the solution. In Fig. 5, we present two graphs of the distribution function from the numerical solu-
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restarting parameter of the GMRES routine to the maximum possible value that avoids computer memory problems.
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tion of Eq. (21) for a grid of 10 grid per variable. One is the surface distribution function on the plane x � y

and the other is the velocity distribution function on the plane vy � vz; they are plotted at different points of
the grid. Note that these figures have not Maxwellian form because Eq. (21) is not in the collisional regime for
the parameters considered in the collision term. This example was chosen only for didactic reasons.

Note that when we used central difference for discretization of Eq. (21), the only contribution to the main
diagonal comes from the last right hand term, i.e. the term with b. For some values of b < 1 our code diverge
because our resulting coefficient matrix is not diagonal dominant. For the same value of b, the gmres routine
converges. The break in convergence at these values of b coincide with the appearance of negatives values on
the distribution function solution found by gmres. We know that one of condition to attained a physical solu-
tion of the Fokker–Planck equation is that the distribution function has to be always positive. It is remarkable
that for Eq. (21) our code diverge when physical solutions are not possible, this could be an indication that we
are applying a wrong scheme for discretization or that we are not describing well the physical phenomena con-
sidered. As we said in the Introduction, other discretization scheme may be applied to avoid this problem.
Thus, in our method the convergence is conditioned to the form of the functions present in (1) and (2), i.e.
physical considerations; and to the difference scheme applied for discretization, i.e. numerical implementation.
For a non-stationary scheme the Crank–Nicolson decomposition in time is suggested because it has implicit
character and it is usually more stable than other methods, but strictly speaking, the stability of the system has
to be studied for each particular case considered.

5. Domains with curved boundaries

The LU code was tested in the previous section with a structure-orthogonal grid but this does not mean that
it can not be applied to more general geometries. To handle a non-square domain we proceed as follows. First
we make a square structured grid with Nnode = ninjnknlnmnn nodes, then we label them according to the index p

defined in (4). Later, the nodes that laid outside the boundary regions are not considered for the calculations.
Now, lets see this procedure in an example. For didactic purpose we used only the one-dimensional case of the
Fokker–Planck equation in which we have two variables (x, vx). In Fig. 6 is depicted in the two dimensional
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plane (x, vx) a domain region X with boundary XB. The domain X is filled with a square structured grid that
leads three classes of grid points: the interior points in which the normal discretization procedure can be done;
the boundary points in which special care have to be taken when Dirichlet, Neumann or mixed boundary con-
ditions are applied; and the exterior points that have to be neglected for the calculation, see Fig. 6.

The incorporation of the Dirichlet boundary conditions using central differences for the boundary points of
region X can be done using a Taylor expansion around the nearest nodes. For example, in Fig. 7, we take the
nearest boundary points for point 1: the internal node (node 2) and the point at the boundary XB (point E);
and make two Taylor expansions around point 1. These expansions give us (our conventions are: partial deriv-
ative with respect to the coordinate x denoted by (,x); Dx is the discretization interval in the x direction),
Fig. 7.
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Schematic representation of a five-point molecule for the finite difference approximation of the derivatives in the plane (x, vx) for a
ary point. Below, we see different boundary situations that can occur in the numerical computation depending on the discretization
d boundary S.
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eliminating the second order derivative between these equations we can express the partial derivative at a
boundary point as
W;x ¼
1

Dx
1

bð1þ bÞWE �
b

1þ b
W2 �

1� b
b

W1

� �
þO½Dx2�. ð23Þ
When b = 1 we recover the usual expression for the central derivative. The same procedure can be applied to
the northern boundary, between node 3 and point A, and to the different types of boundary nodes in Fig. 7.
Also, partial derivative of higher orders and mixed derivatives can be found in a similar way. Furthermore, it
is also possible to implement Neumann boundary conditions in an irregular boundary using finite difference,
see for instance [31].

The exterior points of Fig. 6 are strictly necessary to maintain the ordering of the nodes in a domain with
curved boundaries. This ordering is needed by the code to operate normally but they do not enter into the
calculations. To implement this condition, we have to set the values of the elements Lp

½X �, Lp
P , U p

½X �, Rp, p and
Dp of the external grid point (each exterior point has a position p from the one-dimensional storage index)
equal to zero.

An application of the LU method in a two-dimensional Fokker–Planck equation (x, y, vx, vy) with curved
boundaries, as well as the incomplete LU decomposition for this case can be seen in [25]. Here, the distribution
function of a stationary gravitational thin disk is calculated. Note that in order to obtain the elements of the
LU decomposition for the two-dimensional case, we have to start the calculations from the beginning, i.e. we
can not used the elements found in the three-dimensional case.

6. Concluding remarks

We have developed a variation of the incomplete LU decomposition proposed by Stone that solves the
three-dimensional linear Fokker–Planck equation. The method presented can manage the large set of linear
equations that appears from the discretization procedure. The convergence of the iterative process is done
in a fast and effective way. Also, this method can be easily adapted to support irregular boundaries with
Dirichlet, Neumann or mixed boundary conditions and can be used to follow the evolution of a distribution
function for non-stationary equations. In this case a Crank–Nicolson discretization in time is recommended
because it has implicit character and is more stable than other methods, but strictly speaking, the stability of
the system has to be studied in each particular case considered. The good properties that our method shares
and the lack of methods that handle the large amount of data (given by the Fokker–Planck equation with six
independent variables) make the method presented in this article worthy and advantageous. In general, the
algorithm presented in the article can solve the system of equations that arises from the discretization of
the Eq. (1) or similar equations (with or without the mixed derivatives), but we have to keep in mind that
its convergence is conditioned to the form of the functions _v, A(x, v), B(x, v), C(x, v), D(x, v) and Eij(x, v) that
appear in the collision term (2).

Appendix A. Elements of M = LU at node p

In this section we present how the elements of the matrix M are related to the elements of the upper U and
lower L matrices:
Mp
DD3 ¼ Lp

DD3;

Mp
DD3jN ¼ Lp

DD3U
p�ðnijklmþnijklÞ
N ;

Mp
DD3jE ¼ Lp

DD3Up�ðnijklmþnijklÞ
E ;

Mp
DD3jT ¼ Lp

DD3U
p�ðnijklmþnijklÞ
T ;

Mp
DD3jU1 ¼ Lp

DD3U
p�ðnijklmþnijklÞ
U1 ;

Mp
DB3 ¼ Lp

DB3 þ Lp
DD3Up�ðnijklmþnijklÞ

UB2 ;
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Mp
DB3jN ¼ Lp

DB3U
p�ðnijklmþnijkÞ
N ;

Mp
DB3jE ¼ Lp

DB3U
p�ðnijklmþnijkÞ
E ;

Mp
DB3jT ¼ Lp

DB3U
p�ðnijklmþnijkÞ
T ;

Mp
D3 ¼ Lp

D3 þ Lp
DB3U

p�ðnijklmþnijkÞ
U1 þ Lp

DD3U
p�ðnijklmþnijklÞ
U2 ;

Mp
D3jN ¼ Lp

D3U
p�nijklm
N ;

Mp
D3jE ¼ Lp

D3U
p�nijklm
E ;

Mp
D3jT ¼ Lp

D3U
p�nijklm
T ;

Mp
DT 3 ¼ Lp

DT 3 þ Lp
D3U

p�nijklm

U1 þ Lp
DD3U

p�ðnijklmþnijklÞ
UT 2 ;

Mp
DT 3jN ¼ Lp

DT 3U
p�ðnijklm�nijkÞ
N ;

Mp
DT 3jE ¼ Lp

DT 3U
p�ðnijklm�nijkÞ
E ;

Mp
DT 3jT ¼ Lp

DT 3U
p�ðnijklm�nijkÞ
T ;

Mp
DT 3jU1 ¼ Lp

DT 3U
p�ðnijklm�nijkÞ
U1 ;

Mp
DB3jUB2 ¼ Lp

DB3U
p�ðnijklmþnijkÞ
UB2 ;

Mp
D3jUB2 ¼ Lp

D3U
p�nijklm

UB2 þ Lp
DB3U

p�ðnijklmþnijkÞ
U2 ;

Mp
DU3 ¼ Lp

DU3 þ Lp
DT 3U

p�ðnijklm�nijkÞ
UB2 þ Lp

D3U
p�nijklm

U2 þ Lp
DB3U

p�ðnijklmþnijkÞ
UT 2 ;

Mp
DU3jN ¼ Lp

DU3U
p�ðnijklm�nijklÞ
N ;

Mp
DU3jE ¼ Lp

DU3U
p�ðnijklm�nijklÞ
E ;

Mp
DU3jT ¼ Lp

DU3U
p�ðnijklm�nijklÞ
T ;

Mp
DU3jU1 ¼ Lp

DU3U
p�ðnijklm�nijklÞ
U1 þ Lp

DT 3U
p�ðnijklm�nijkÞ
U2 þ Lp

D3U
p�nijklm

UT 2 ;

Mp
DT 3jUT 2 ¼ Lp

DT 3U
p�ðnijklm�nijkÞ
UT 2 ;

Mp
DU3jUB2 ¼ Lp

DU3Up�ðnijklm�nijklÞ
UB2 ;

Mp
DU3jU2 ¼ Lp

DU3U
p�ðnijklm�nijklÞ
U2 ;

Mp
DU3jUT 2 ¼ Lp

DU3U
p�ðnijklm�nijklÞ
UT 2 ;

Mp
DD3jUD3 ¼ Lp

DD3U p�ðnijklmþnijklÞ
UD3 ;

Mp
DB2 ¼ Lp

DB2 þ Lp
DB3U

p�ðnijklmþnijkÞ
UD3 þ Lp

DD3U
p�ðnijklmþnijklÞ
UB3 ;

Mp
DB2jN ¼ Lp

DB2U
p�ðnijklþnijkÞ
N ;

Mp
DB2jE ¼ Lp

DB2U p�ðnijklþnijkÞ
E ;

Mp
DB2jT ¼ Lp

DB2U
p�ðnijklþnijkÞ
T ;

Mp
D2 ¼ Lp

D2 þ Lp
DB2U

p�ðnijklþnijkÞ
U1 þ Lp

D3U
p�nijklm

UD3 þ Lp
DD3U

p�ðnijklmþnijklÞ
U3 ;

Mp
D2jN ¼ Lp

D2U
p�nijkl
N ;

Mp
D2jE ¼ Lp

D2Up�nijkl
E ;

Mp
D2jT ¼ Lp

D2U
p�nijkl
T ;

Mp
DT 2 ¼ Lp

DT 2 þ Lp
D2U p�nijkl

U1 þ Lp
DT 3U p�ðnijklm�nijkÞ

UD3 þ Lp
DD3U p�ðnijklmþnijklÞ

UT 3 ;
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Mp
DT 2jN ¼ Lp

DT 2U
p�ðnijkl�nijkÞ
N ;

Mp
DT 2jE ¼ Lp

DT 2U
p�ðnijkl�nijkÞ
E ;

Mp
DT 2jT ¼ Lp

DT 2U
p�ðnijkl�nijkÞ
T ;

Mp
DT 2jU1 ¼ Lp

DT 2U
p�ðnijkl�nijkÞ
U1 ;

Mp
DB2jUB2 ¼ Lp

DB2U
p�ðnijklþnijkÞ
UB2 þ Lp

DB3U
p�ðnijklmþnijkÞ
UB3 ;

Mp
D1 ¼ Lp

D1 þ Lp
D2U

p�nijkl

UB2 þ Lp
DB2U

p�ðnijklþnijkÞ
U2 þ Lp

D3U
p�nijklm

UB3 þ Lp
DB3U

p�ðnijklmþnijkÞ
U3 ;

Mp
D1jN ¼ Lp

D1U
p�nijk
N ;

Mp
D1jE ¼ Lp

D1U
p�nijk
E ;

Mp
D1jT ¼ Lp

D1U
p�nijk
T ;

Mp
B ¼ Lp

B;

Mp
BjN ¼ Lp

BU p�nij
N ;

Mp
BjE ¼ Lp

BU p�nij
E ;

Mp
W ¼ Lp

W ;

Mp
W jN ¼ Lp

W U p�nj
N ;

Mp
S ¼ Lp

S ;

Mp
P ¼ Lp

P þ Lp
SU p�1

N þ Lp
W U p�nj

E þ Lp
BU p�nij

T þ Lp
D1U

p�nijk

U1 þ Lp
DT 2U

p�ðnijkl�nijkÞ
UB2 þ Lp

D2U
p�nijkl

U2

þ Lp
DB2U

p�ðnijklþnijkÞ
UT 2 þ Lp

DU3U
p�ðnijklm�nijklÞ
UD3 þ Lp

DT 3U
p�ðnijklm�nijkÞ
UB3 þ Lp

D3U
p�nijklm

U3

þ Lp
DB3U

p�ðnijklmþnijkÞ
UT 3 þ Lp

DD3U
p�ðnijklmþnijklÞ
UU3 ;

Mp
N ¼ Lp

P U p
N ;

Mp
SjE ¼ Lp

SU p�1
E ;

Mp
E ¼ Lp

P Up
E;

Mp
W jT ¼ Lp

W U p�nj
T ;

Mp
SjT ¼ Lp

SUp�1
T ;

Mp
T ¼ Lp

P U p
T ;

Mp
BjU1 ¼ Lp

BUp�nij

U1 ;

Mp
W jU1 ¼ Lp

W U p�nj

U1 ;

Mp
SjU1 ¼ Lp

SU p�1
U1 ;

Mp
U1 ¼ Lp

P U p
U1 þ Lp

DT 2U
p�ðnijkl�nijkÞ
U2 þ Lp

D2U
p�nijkl

UT 2 þ Lp
DT 3U

p�ðnijklm�nijkÞ
U3 þ Lp

D3U
p�nijklm

UT 3 ;

Mp
DT 2jUT 2 ¼ Lp

DT 2U
p�ðnijkl�nijkÞ
UT 2 þ Lp

DT 3U
p�ðnijklm�nijkÞ
UT 3 ;

Mp
D1jUB2 ¼ Lp

D1U p�nijk

UB2 ;

Mp
BjUB2 ¼ Lp

BU p�nij

UB2 ;

Mp
W jUB2 ¼ Lp

W U p�nj

UB2 ;

Mp
SjUB2 ¼ Lp

SUp�1
UB2;

Mp
UB2 ¼ Lp

P Up
UB2 þ Lp

D1U
p�nijk

U2 þ Lp
DU3U

p�ðnijklm�nijklÞ
UB3 þ Lp

DB3U
p�ðnijklmþnijkÞ
UU3 ;

Mp
BjU2 ¼ Lp

BUp�nij

U2 ;

Mp
W jU2 ¼ Lp

W U p�nj

U2 ;
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Mp
SjU2 ¼ Lp

SU p�1
U2 ;

Mp
U2 ¼ Lp

P Up
U2 þ Lp

D1U
p�nijk

UT 2 þ Lp
DU3U

p�ðnijklm�nijklÞ
U3 þ Lp

D3U
p�nijklm

UU3 ;

Mp
BjUT 2 ¼ Lp

BU p�nij

UT 2 ;

Mp
W jUT 2 ¼ Lp

W U p�nj

UT 2 ;

Mp
SjUT 2 ¼ Lp

SUp�1
UT 2;

Mp
UT 2 ¼ Lp

P U p
UT 2 þ Lp

DU3U
p�ðnijklm�nijklÞ
UT 3 þ Lp

DT 3U
p�ðnijklm�nijkÞ
UU3 ;

Mp
DU3jUU3 ¼ Lp

DU3U
p�ðnijklm�nijklÞ
UU3 ;

Mp
DB2jUD3 ¼ Lp

DB2U
p�ðnijklþnijkÞ
UD3 ;

Mp
D2jUD3 ¼ Lp

D2U
p�nijkl

UD3 ;

Mp
DT 2jUD3 ¼ Lp

DT 2U
p�ðnijkl�nijkÞ
UD3 ;

Mp
DB2jUB3 ¼ Lp

DB2U
p�ðnijklþnijkÞ
UB3 ;

Mp
D1jUD3 ¼ Lp

D1U
p�nijk

UD3 þ Lp
D2U

p�nijkl

UB3 þ Lp
DB2U

p�ðnijklþnijkÞ
U3 ;

Mp
BjUD3 ¼ Lp

BUp�nij

UD3 ;

Mp
W jUD3 ¼ Lp

W U p�nj

UD3 ;

Mp
SjUD3 ¼ Lp

SU p�1
UD3;

Mp
UD3 ¼ Lp

P U p
UD3 þ Lp

DT 2U
p�ðnijkl�nijkÞ
UB3 þ Lp

D2U
p�nijkl

U3 þ Lp
DB2U

p�ðnijklþnijkÞ
UT 3 ;

Mp
DT 2jU3 ¼ Lp

DT 2U
p�ðnijkl�nijkÞ
U3 þ Lp

D2U
p�nijkl

UT 3 ;

Mp
DT 2jUT 3 ¼ Lp

DT 2U
p�ðnijkl�nijkÞ
UT 3 ;

Mp
D1jUB3 ¼ Lp

D1U
p�nijk

UB3 ;

Mp
BjUB3 ¼ Lp

BUp�nij

UB3 ;

Mp
W jUB3 ¼ Lp

W Up�nj

UB3 ;

Mp
SjUB3 ¼ Lp

SU p�1
UB3;

Mp
UB3 ¼ Lp

P U p
UB3 þ Lp

D1U
p�nijk

U3 þ Lp
DB2U

p�ðnijklþnijkÞ
UU3 ;

Mp
BjU3 ¼ Lp

BU p�nij

U3 ;

Mp
W jU3 ¼ Lp

W Up�nj

U3 ;

Mp
SjU3 ¼ Lp

SU p�1
U3 ;

Mp
U3 ¼ Lp

P Up
U3 þ Lp

D1U
p�nijk

UT 3 þ Lp
D2U

p�nijkl

UU3 ;

Mp
BjUT 3 ¼ Lp

BU p�nij

UT 3 ;

Mp
W jUT 3 ¼ Lp

W U p�nj

UT 3 ;

Mp
SjUT 3 ¼ Lp

SUp�1
UT 3;

Mp
UT 3 ¼ Lp

P U p
UT 3 þ Lp

DT 2U
p�ðnijkl�nijkÞ
UU3 ;

Mp
D1jUU3 ¼ Lp

D1U
p�nijk

UU3 ;

Mp
BjUU3 ¼ Lp

BU p�nij

UU3 ;

Mp
W jUU3 ¼ Lp

W U p�nj

UU3 ;

Mp
SjUU3 ¼ Lp

SUp�1
UU3;

Mp
UU3 ¼ Lp

P U p
UU3. ðA1Þ
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Appendix B. Explicit form of Eq. (9)

In this section we present the explicit form of OW � 0 for each grid node:
ODD3WDD3 þ ODB3WDB3 þ OD3WD3 þ ODT 3WDT 3 þ ODU3WDU3 þ ODB2WDB2 þ OD2WD2 þ ODT 2WDT 2

þ OD1WD1 þ OBWB þ OW WW þ OSWS þ OP WP þ ONWN þ OEWE þ OT WT þ OU1WU1

þ OUB2WUB2 þ OU2WU2 þ OUT 2WUT 2 þ OUD3WUD3 þ OUB3WUB3 þ OU3WU3 þ OUT 3WUT 3

þ OUU3WUU3 þMDD3jNWDD3jN þMDD3jEWDD3jE þMDD3jT WDD3jT þMDD3jU1WDD3jU1

þMDB3jNWDB3jN þMDB3jEWDB3jE þMDB3jT WDB3jT þMD3jNWD3jN þMD3jEWD3jE

þMD3jT WD3jT þMDT 3jNWDT 3jN þMDT 3jEWDT 3jE þMDT 3jT WDT 3jT þMDT 3jU1WDT 3jU1

þMDB3jUB2WDB3jUB2 þMDB3jU2WDB3jU2 þMD3jUB2WD3jUB2 þMDU3jNWDU3jN þMDU3jEWDU3jE

þMDU3jT WDU3jT þMD3jUT 2WD3jUT 2 þMDT 3jU2WDT 3jU2 þMDU3jU1WDU3jU1 þMDT 3jUT 2WDT 3jUT 2

þMDU3jUB2WDU3jUB2 þMDU3jU2WDU3jU2 þMDU3jUT 2WDU3jUT 2 þMDD3jUD3WDD3jUD3

þMDB2jNWDB2jN þMDB2jEWDB2jE þMDB2jT WDB2jT þMD2jNWD2jN þMD2jEWD2jE

þMD2jT WD2jT þMDT 2jNWDT 2jN þMDT 2jEWDT 2jE þMDT 2jT WDT 2jT þMDT 2jU1WDT 2jU1

þMDB3jUB3WDB3jUB3 þMDB2jUB2WDB2jUB2 þMD1jNWD1jN þMD1jEWD1jE þMD1jT WD1jT

þMBjNWBjN þMBjEWBjE þMW jNWW jN þMSjEWSjE þMW jT WW jT þMSjT WSjT þMBjU1WBjU1

þMW jU1WW jU1 þMSjU1WSjU1 þMDT 2jUT 2WDT 2jUT 2 þMDT 3jUT 3WDT 3jUT 3 þMD1jUB2WD1jUB2

þMBjUB2WBjUB2 þMW jUB2WW jUB2 þMSjUB2WSjUB2 þMBjU2WBjU2 þMW jU2WW jU2

þMSjU2WSjU2 þMBjUT 2WBjUT 2 þMW jUT 2WW jUT 2 þMSjUT 2WSjUT 2 þMDU3jUU3WDU3jUU3

þMDB2jUD3WDB2jUD3 þMD2jUD3WD2jUD3 þMDT 2jUD3WDT 2jUD3 þMDB2jUB3WDB2jUB3

þMD1jUD3WD1jUD3 þMD2jUB3WD2jUB3 þMDB2jU3WDB2jU3 þMBjUD3WBjUD3

þMW jUD3WW jUD3 þMSjUD3WSjUD3 þMDT 2jU3WDT 2jU3 þMD2jUT 3WD2jUT 3 þMDT 2jUT 3WDT 2jUT 3

þMD1jUB3WD1jUB3 þMBjUB3WBjUB3 þMW jUB3WW jUB3 þMSjUB3WSjUB3

þMBjU3WBjU3 þMW jU3WW jU3 þMSjU3WSjU3 þMBjUT 3WBjUT 3 þMW jUT 3WW jUT 3 þMSjUT 3WSjUT 3

þMD1jUU3WD1jUU3 þMBjUU3WBjUU3 þMW jUU3WW jUU3 þMSjUU3WSjUU3 � 0. ðB1Þ
Appendix C. O as a linear combination of M

In this section we present the elements of the matrix O as a linear combination of the elements of matrix M

using the relations (10):
;

ODD3 ¼ �aðMDD3jN þMDD3jE þMDD3jT þMDD3jU1 þMDD3jUD3Þ;
ODB3 ¼ �aðMDB3jN þMDB3jE þMDB3jT þMDB3jUB2 þMDB3jU2 þMDB3jUB3Þ;
OD3 ¼ �aðMD3jN þMD3jE þMD3jT þMD3jUB2 þMD3jUT 2Þ;
ODT 3 ¼ �aðMDT 3jN þMDT 3jE þMDT 3jT þMDT 3jU1 þMDT 3jU2 þMDT 3jUT 2 þMDT 3jUT 3Þ;
ODU3 ¼ �aðMDU3jN þMDU3jE þMDU3jT þMDU3jU1 þMDU3jUB2 þMDU3jU2 þMDU3jUT 2 þMDU3jUU3Þ;
ODB2 ¼ �aðMDB2jN þMDB2jE þMDB2jT þMDB2jUB2 þMDB2jUD3 þMDB2jUB3 þMDB2jU3Þ;
OD2 ¼ �aðMD2jN þMD2jE þMD2jT þMD2jUD3 þMD2jUB3 þMD2jUT 3Þ;
ODT 2 ¼ �aðMDT 2jN þMDT 2jE þMDT 2jT þMDT 2jU1 þMDT 2jUT 2 þMDT 2jUD3 þMDT 2jU3 þMDT 2jUT 3Þ;
OD1 ¼ �aðMD1jN þMD1jE þMD1jT þMD1jUB2 þMD1jUD3 þMD1jUB3 þMD1jUU3Þ;
OB ¼ �aðMBjN þMBjE þMBjU1 þMBjUB2 þMBjU2 þMBjUT 2 þMBjUD3 þMBjUB3 þMBjU3 þMBjUT 3 þMBjUU3Þ
OW ¼ �aðMW jN þMW jT þMW jU1 þMW jUB2 þMW jU2 þMW jUT 2 þMW jUD3 þMW jUB3

þMW jU3 þMW jUT 3 þMW jUU3Þ;
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OS ¼ �aðMSjE þMSjT þMSjU1 þMSjUB2 þMSjU2 þMSjUT 2 þMSjUD3 þMSjUB3 þMSjU3 þMSjUT 3 þMSjUU3Þ;
OP ¼ aðMDD3jN þMDD3jE þMDD3jT þMDD3jU1 þMDB3jN þMDB3jE þMDB3jT þMD3jN þMD3jE þMD3jT

þMDT 3jN þMDT 3jE þMDT 3jT þMDT 3jU1 þMDB3jUB2 þMDB3jU2 þMD3jUB2 þMDU3jN þMDU3jE

þMDU3jT þMD3jUT 2 þMDT 3jU2 þMDU3jU1 þMDT 3jUT 2 þMDU3jUB2 þMDU3jU2 þMDU3jUT 2

þMDD3jUD3 þMDB2jN þMDB2jE þMDB2jT þMD2jN þMD2jE þMD2jT þMDT 2jN þMDT 2jE þMDT 2jT

þMDT 2jU1 þMDB3jUB3 þMDB2jUB2 þMD1jN þMD1jE þMD1jT þMBjN þMBjE þMW jN þMSjE

þMW jT þMSjT þMBjU1 þMW jU1 þMSjU1 þMDT 2jUT 2 þMDT 3jUT 3 þMD1jUB2 þMBjUB2 þMW jUB2

þMSjUB2 þMBjU2 þMW jU2 þMSjU2 þMBjUT 2 þMW jUT 2 þMSjUT 2 þMDU3jUU3 þMDB2jUD3

þMD2jUD3 þMDT 2jUD3 þMDB2jUB3 þMD1jUD3 þMD2jUB3 þMDB2jU3 þMBjUD3 þMW jUD3 þMSjUD3

þMDT 2jU3 þMD2jUT 3 þMDT 2jUT 3 þMD1jUB3 þMBjUB3 þMW jUB3 þMSjUB3 þMBjU3 þMW jU3

þMSjU3 þMBjUT 3 þMW jUT 3 þMSjUT 3 þMD1jUU3 þMBjUU3 þMW jUU3 þMSjUU3Þ;
ON ¼ �aðMDD3jN þMDB3jN þMD3jN þMDT 3jN þMDU3jN þMDB2jN þMD2jN þMDT 2jN

þMD1jN þMBjN þMW jN Þ;
OE ¼ �aðMDD3jE þMDB3jE þMD3jE þMDT 3jE þMDU3jE þMDB2jE þMD2jE þMDT 2jE

þMD1jE þMBjE þMSjEÞ;
OT ¼ �aðMDD3jT þMDB3jT þMD3jT þMDT 3jT þMDU3jT þMDB2jT þMD2jT þMDT 2jT

þMD1jT þMW jT þMSjT Þ;
OU1 ¼ �aðMDD3jU1 þMDT 3jU1 þMDU3jU1 þMDT 2jU1 þMBjU1 þMW jU1 þMSjU1Þ;
OUB2 ¼ �aðMDB3jUB2 þMD3jUB2 þMDU3jUB2 þMDB2jUB2 þMD1jUB2 þMBjUB2 þMW jUB2 þMSjUB2Þ;
OU2 ¼ �aðMDB3jU2 þMDT 3jU2 þMDU3jU2 þMBjU2 þMW jU2 þMSjU2Þ;
OUT 2 ¼ �aðMD3jUT 2 þMDT 3jUT 2 þMDU3jUT 2 þMDT 2jUT 2 þMBjUT 2 þMW jUT 2 þMSjUT 2Þ;
OUD3 ¼ �aðMDD3jUD3 þMDB2jUD3 þMD2jUD3 þMDT 2jUD3 þMD1jUD3 þMBjUD3 þMW jUD3 þMSjUD3Þ;
OUB3 ¼ �aðMDB3jUB3 þMDB2jUB3 þMD2jUB3 þMD1jUB3 þMBjUB3 þMW jUB3 þMSjUB3Þ;
OU3 ¼ �aðMDB2jU3 þMDT 2jU3 þMBjU3 þMW jU3 þMSjU3Þ;
OUT 3 ¼ �aðMDT 3jUT 3 þMD2jUT 3 þMDT 2jUT 3 þMBjUT 3 þMW jUT 3 þMSjUT 3Þ;
OUU3 ¼ �aðMDU3jUU3 þMD1jUU3 þMBjUU3 þMW jUU3 þMSjUU3Þ. ðC1Þ
Appendix D. Explicit form of the functions C[X] and K[X]

In this section we show the functions C[X] and K[X] that appear in the final expression (11) of the LU

decomposition:
CDB3 ¼ Lp
DD3U

p�ðnijklmþnijklÞ
UB2 ;

CD3 ¼ Lp
DD3U

p�ðnijklmþnijklÞ
U2 þ Lp

DB3U
p�ðnijklmþnijkÞ
U1 ;

CDT 3 ¼ Lp
DD3U

p�ðnijklmþnijklÞ
UT 2 þ Lp

D3U
p�nijklm

U1 ;

CDU3 ¼ Lp
DB3U

p�ðnijklmþnijkÞ
UT 2 þ Lp

D3U
p�nijklm

U2 þ Lp
DT 3U

p�ðnijklm�nijkÞ
UB2 ;

CDB2 ¼ Lp
DD3U

p�ðnijklmþnijklÞ
UB3 þ Lp

DB3U
p�ðnijklmþnijkÞ
UD3 ;

CD2 ¼ Lp
DD3U

p�ðnijklmþnijklÞ
U3 þ Lp

D3U
p�nijklm

UD3 þ Lp
DB2U

p�ðnijklþnijkÞ
U1 ;

CDT 2 ¼ Lp
DD3U

p�ðnijklmþnijklÞ
UT 3 þ Lp

DT 3U
p�ðnijklm�nijkÞ
UD3 þ Lp

D2U
p�nijkl

U1 ;

CD1 ¼ Lp
DB3U

p�ðnijklmþnijkÞ
U3 þ Lp

D3U
p�nijklm

UB3 þ Lp
DB2U

p�ðnijklþnijkÞ
U2 þ Lp

D2U
p�nijkl

UB2 ;

CU1 ¼ Lp
DT 2U

p�ðnijkl�nijkÞ
U2 þ Lp

D2U
p�nijkl

UT 2 þ Lp
DT 3U

p�ðnijklm�nijkÞ
U3 þ Lp

D3U
p�nijklm

UT 3 ;
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CUB2 ¼ Lp
D1U

p�nijk

U2 þ Lp
DU3U

p�ðnijklm�nijklÞ
UB3 þ Lp

DB3U
p�ðnijklmþnijkÞ
UU3 ;

CU2 ¼ Lp
D1U

p�nijk

UT 2 þ Lp
DU3U

p�ðnijklm�nijklÞ
U3 þ Lp

D3U
p�nijklm

UU3 ;

CUT 2 ¼ Lp
DU3U

p�ðnijklm�nijklÞ
UT 3 þ Lp

DT 3U
p�ðnijklm�nijkÞ
UU3 ;

CUD3 ¼ Lp
DT 2U

p�ðnijkl�nijkÞ
UB3 þ Lp

D2U
p�nijkl

U3 þ Lp
DB2U

p�ðnijklþnijkÞ
UT 3 ;

CUB3 ¼ Lp
D1U

p�nijk

U3 þ Lp
DB2U

p�ðnijklþnijkÞ
UU3 ;

CU3 ¼ Lp
D1U

p�nijk

UT 3 þ Lp
D2U

p�nijkl

UU3 ;

CUT 3 ¼ Lp
DT 2U

p�ðnijkl�nijkÞ
UU3 ;

CDD3 ¼ CB ¼ CW ¼ CS ¼ CN ¼ CE ¼ CT ¼ CUU3 ¼ 0;

KDD3 ¼ U
p�ðnijklmþnijklÞ
N þ U

p�ðnijklmþnijklÞ
E þ U

p�ðnijklmþnijklÞ
T þ U

p�ðnijklmþnijklÞ
U1 þ U

p�ðnijklmþnijklÞ
UD3 ;

KDB3 ¼ U
p�ðnijklmþnijkÞ
N þ U

p�ðnijklmþnijkÞ
E þ U

p�ðnijklmþnijkÞ
T þ U

p�ðnijklmþnijkÞ
UB2 þ U

p�ðnijklmþnijkÞ
U2 þ U

p�ðnijklmþnijkÞ
UB3 ;

KD3 ¼ U
p�nijklm
N þ U

p�nijklm
E þ U

p�nijklm
T þ U

p�nijklm

UB2 þ U
p�nijklm

UT 2 ;

KDT 3 ¼ U
p�ðnijklm�nijkÞ
N þ U

p�ðnijklm�nijkÞ
E þ U

p�ðnijklm�nijkÞ
T þ U

p�ðnijklm�nijkÞ
U1 þ U

p�ðnijklm�nijkÞ
U2

þ U
p�ðnijklm�nijkÞ
UT 2 þ U

p�ðnijklm�nijkÞ
UT 3 ;

KDU3 ¼ U
p�ðnijklm�nijklÞ
N þ U

p�ðnijklm�nijklÞ
E þ U

p�ðnijklm�nijklÞ
T þ U

p�ðnijklm�nijklÞ
U1 þ U

p�ðnijklm�nijklÞ
UB2

þ U
p�ðnijklm�nijklÞ
U2 þ U

p�ðnijklm�nijklÞ
UT 2 þ U

p�ðnijklm�nijklÞ
UU3 ;

KDB2 ¼ U
p�ðnijklþnijkÞ
N þ U

p�ðnijklþnijkÞ
E þ U

p�ðnijklþnijkÞ
T þ U

p�ðnijklþnijkÞ
UB2 þ U

p�ðnijklþnijkÞ
UD3 þ U

p�ðnijklþnijkÞ
UB3

þ U
p�ðnijklþnijkÞ
U3 ;

KD2 ¼ U
p�nijkl
N þ U

p�nijkl
E þ U

p�nijkl
T þ U

p�nijkl

UD3 þ U
p�nijkl

UB3 þ U
p�nijkl

UT 3 ;

KDT 2 ¼ U
p�ðnijkl�nijkÞ
N þ U

p�ðnijkl�nijkÞ
E þ U

p�ðnijkl�nijkÞ
T þ U

p�ðnijkl�nijkÞ
U1 þ U

p�ðnijkl�nijkÞ
UT 2 þ U

p�ðnijkl�nijkÞ
UD3

þ U
p�ðnijkl�nijkÞ
U3 þ U

p�ðnijkl�nijkÞ
UT 3 ;

KD1 ¼ U
p�nijk
N þ U

p�nijk
E þ U

p�nijk
T þ U

p�nijk

UB2 þ U
p�nijk

UD3 þ U
p�nijk

UB3 þ U
p�nijk

UU3 ;

KB ¼ U p�nij
N þ U p�nij

E þ Up�nij

U1 þ Up�nij

UB2 þ U p�nij

U2 þ U p�nij

UT 2 þ Up�nij

UD3 þ Up�nij

UB3 þ U p�nij

U3 þ U p�nij

UT 3 þ Up�nij

UU3 ;

KW ¼ U p�nj
N þ Up�nj

T þ U p�nj

U1 þ Up�nj

UB2 þ U p�nj

U2 þ Up�nj

UT 2 þ U p�nj

UD3 þ Up�nj

UB3 þ U p�nj

U3 þ Up�nj

UT 3 þ U p�nj

UU3 ;

KS ¼ Up�1
E þ Up�1

T þ U p�1
U1 þ U p�1

UB2 þ U p�1
U2 þ Up�1

UT 2 þ U p�1
UD3 þ U p�1

UB3 þ U p�1
U3 þ Up�1

UT 3 þ U p�1
UU3;

KN ¼ Lp
DD3U

p�ðnijklmþnijklÞ
N þ Lp

DB3U
p�ðnijklmþnijkÞ
N þ Lp

D3U
p�nijklm
N þ Lp

DT 3U
p�ðnijklm�nijkÞ
N

þ Lp
DU3U

p�ðnijklm�nijklÞ
N þ Lp

DB2U
p�ðnijklþnijkÞ
N þ Lp

D2U
p�nijkl
N þ Lp

DT 2U
p�ðnijkl�nijkÞ
N þ Lp

D1U
p�nijk
N

þ Lp
BU p�nij

N þ Lp
W Up�nj

N ;

KE ¼ Lp
DD3U

p�ðnijklmþnijklÞ
E þ Lp

DB3U
p�ðnijklmþnijkÞ
E þ Lp

D3U
p�nijklm
E þ Lp

DT 3U
p�ðnijklm�nijkÞ
E

þ Lp
DU3U

p�ðnijklm�nijklÞ
E þ Lp

DB2U
p�ðnijklþnijkÞ
E þ Lp

D2U
p�nijkl
E þ Lp

DT 2U
p�ðnijkl�nijkÞ
E þ Lp

D1U
p�nijk
E

þ Lp
BU p�nij

E þ Lp
SU p�1

E ;

KT ¼ Lp
DD3U

p�ðnijklmþnijklÞ
T þ Lp

DB3U
p�ðnijklmþnijkÞ
T þ Lp

D3U
p�nijklm
T þ Lp

DT 3U
p�ðnijklm�nijkÞ
T

þ Lp
DU3U p�ðnijklm�nijklÞ

T þ Lp
DB2Up�ðnijklþnijkÞ

T þ Lp
D2U p�nijkl

T þ Lp
DT 2U p�ðnijkl�nijkÞ

T þ Lp
D1Up�nijk

T

þ Lp
W U p�nj

T þ Lp
SUp�1

T ;

KU1 ¼ Lp
DD3U

p�ðnijklmþnijklÞ
U1 þ Lp

DT 3U
p�ðnijklm�nijkÞ
U1 þ Lp

DU3U
p�ðnijklm�nijklÞ
U1 þ Lp

DT 2U
p�ðnijkl�nijkÞ
U1

þ Lp
BU p�nij

U1 þ Lp
W Up�nj

U1 þ Lp
SU p�1

U1 ;
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KUB2 ¼ Lp
DB3U

p�ðnijklmþnijkÞ
UB2 þ Lp

D3U
p�nijklm

UB2 þ Lp
DU3U

p�ðnijklm�nijklÞ
UB2 þ Lp

DB2U
p�ðnijklþnijkÞ
UB2 þ Lp

D1U
p�nijk

UB2

þ Lp
BUp�nij

UB2 þ Lp
W U p�nj

UB2 þ Lp
SUp�1

UB2;

KU2 ¼ Lp
DB3U

p�ðnijklmþnijkÞ
U2 þ Lp

DT 3U
p�ðnijklm�nijkÞ
U2 þ Lp

DU3U
p�ðnijklm�nijklÞ
U2 þ Lp

BU p�nij

U2 þ Lp
W Up�nj

U2 þ Lp
SU p�1

U2 ;

KUT 2 ¼ Lp
D3U

p�nijklm

UT 2 þ Lp
DT 3U

p�ðnijklm�nijkÞ
UT 2 þ Lp

DU3U
p�ðnijklm�nijklÞ
UT 2 þ Lp

DT 2U
p�ðnijkl�nijkÞ
UT 2 þ Lp

BU p�nij

UT 2

þ Lp
W U p�nj

UT 2 þ Lp
SU p�1

UT 2;

KUD3 ¼ Lp
DD3Up�ðnijklmþnijklÞ

UD3 þ Lp
DB2U p�ðnijklþnijkÞ

UD3 þ Lp
D2Up�nijkl

UD3 þ Lp
DT 2Up�ðnijkl�nijkÞ

UD3 þ Lp
D1U p�nijk

UD3

þ Lp
BUp�nij

UD3 þ Lp
W U p�nj

UD3 þ Lp
SUp�1

UD3;

KUB3 ¼ Lp
DB3U

p�ðnijklmþnijkÞ
UB3 þ Lp

DB2U
p�ðnijklþnijkÞ
UB3 þ Lp

D2U
p�nijkl

UB3 þ Lp
D1U

p�nijk

UB3 þ Lp
BU p�nij

UB3 þ Lp
W U p�nj

UB3

þ Lp
SU p�1

UB3;

KU3 ¼ Lp
DB2U

p�ðnijklþnijkÞ
U3 þ Lp

DT 2U
p�ðnijkl�nijkÞ
U3 þ Lp

BUp�nij

U3 þ Lp
W U p�nj

U3 þ Lp
SUp�1

U3 ;

KUT 3 ¼ Lp
DT 3U

p�ðnijklm�nijkÞ
UT 3 þ Lp

D2U
p�nijkl

UT 3 þ Lp
DT 2U

p�ðnijkl�nijkÞ
UT 3 þ Lp

BU p�nij

UT 3 þ Lp
W Up�nj

UT 3 þ Lp
SU p�1

UT 3;

KUU3 ¼ Lp
DU3U

p�ðnijklm�nijklÞ
UU3 þ Lp

D1U
p�nijk

UU3 þ Lp
BUp�nij

UU3 þ Lp
W U p�nj

UU3 þ Lp
SUp�1

UU3; ðD1Þ
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